Metamath Proof Explorer


Theorem fct2relem

Description: Lemma for ftc2re . (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses ftc2re.e
|- E = ( C (,) D )
ftc2re.a
|- ( ph -> A e. E )
ftc2re.b
|- ( ph -> B e. E )
Assertion fct2relem
|- ( ph -> ( A [,] B ) C_ E )

Proof

Step Hyp Ref Expression
1 ftc2re.e
 |-  E = ( C (,) D )
2 ftc2re.a
 |-  ( ph -> A e. E )
3 ftc2re.b
 |-  ( ph -> B e. E )
4 2 1 eleqtrdi
 |-  ( ph -> A e. ( C (,) D ) )
5 eliooxr
 |-  ( A e. ( C (,) D ) -> ( C e. RR* /\ D e. RR* ) )
6 4 5 syl
 |-  ( ph -> ( C e. RR* /\ D e. RR* ) )
7 6 simpld
 |-  ( ph -> C e. RR* )
8 6 simprd
 |-  ( ph -> D e. RR* )
9 eliooord
 |-  ( A e. ( C (,) D ) -> ( C < A /\ A < D ) )
10 4 9 syl
 |-  ( ph -> ( C < A /\ A < D ) )
11 10 simpld
 |-  ( ph -> C < A )
12 3 1 eleqtrdi
 |-  ( ph -> B e. ( C (,) D ) )
13 eliooord
 |-  ( B e. ( C (,) D ) -> ( C < B /\ B < D ) )
14 12 13 syl
 |-  ( ph -> ( C < B /\ B < D ) )
15 14 simprd
 |-  ( ph -> B < D )
16 iccssioo
 |-  ( ( ( C e. RR* /\ D e. RR* ) /\ ( C < A /\ B < D ) ) -> ( A [,] B ) C_ ( C (,) D ) )
17 7 8 11 15 16 syl22anc
 |-  ( ph -> ( A [,] B ) C_ ( C (,) D ) )
18 17 1 sseqtrrdi
 |-  ( ph -> ( A [,] B ) C_ E )