Step |
Hyp |
Ref |
Expression |
1 |
|
fczfsuppd.b |
|- ( ph -> B e. V ) |
2 |
|
fczfsuppd.z |
|- ( ph -> Z e. W ) |
3 |
|
fnconstg |
|- ( Z e. W -> ( B X. { Z } ) Fn B ) |
4 |
|
fnfun |
|- ( ( B X. { Z } ) Fn B -> Fun ( B X. { Z } ) ) |
5 |
2 3 4
|
3syl |
|- ( ph -> Fun ( B X. { Z } ) ) |
6 |
|
fczsupp0 |
|- ( ( B X. { Z } ) supp Z ) = (/) |
7 |
|
0fin |
|- (/) e. Fin |
8 |
6 7
|
eqeltri |
|- ( ( B X. { Z } ) supp Z ) e. Fin |
9 |
8
|
a1i |
|- ( ph -> ( ( B X. { Z } ) supp Z ) e. Fin ) |
10 |
|
snex |
|- { Z } e. _V |
11 |
|
xpexg |
|- ( ( B e. V /\ { Z } e. _V ) -> ( B X. { Z } ) e. _V ) |
12 |
1 10 11
|
sylancl |
|- ( ph -> ( B X. { Z } ) e. _V ) |
13 |
|
isfsupp |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. W ) -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) |
14 |
12 2 13
|
syl2anc |
|- ( ph -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) |
15 |
5 9 14
|
mpbir2and |
|- ( ph -> ( B X. { Z } ) finSupp Z ) |