| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fczfsuppd.b |  |-  ( ph -> B e. V ) | 
						
							| 2 |  | fczfsuppd.z |  |-  ( ph -> Z e. W ) | 
						
							| 3 |  | fnconstg |  |-  ( Z e. W -> ( B X. { Z } ) Fn B ) | 
						
							| 4 |  | fnfun |  |-  ( ( B X. { Z } ) Fn B -> Fun ( B X. { Z } ) ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( ph -> Fun ( B X. { Z } ) ) | 
						
							| 6 |  | fczsupp0 |  |-  ( ( B X. { Z } ) supp Z ) = (/) | 
						
							| 7 |  | 0fi |  |-  (/) e. Fin | 
						
							| 8 | 6 7 | eqeltri |  |-  ( ( B X. { Z } ) supp Z ) e. Fin | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( ( B X. { Z } ) supp Z ) e. Fin ) | 
						
							| 10 |  | snex |  |-  { Z } e. _V | 
						
							| 11 |  | xpexg |  |-  ( ( B e. V /\ { Z } e. _V ) -> ( B X. { Z } ) e. _V ) | 
						
							| 12 | 1 10 11 | sylancl |  |-  ( ph -> ( B X. { Z } ) e. _V ) | 
						
							| 13 |  | isfsupp |  |-  ( ( ( B X. { Z } ) e. _V /\ Z e. W ) -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) | 
						
							| 14 | 12 2 13 | syl2anc |  |-  ( ph -> ( ( B X. { Z } ) finSupp Z <-> ( Fun ( B X. { Z } ) /\ ( ( B X. { Z } ) supp Z ) e. Fin ) ) ) | 
						
							| 15 | 5 9 14 | mpbir2and |  |-  ( ph -> ( B X. { Z } ) finSupp Z ) |