Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) = ( B X. { Z } ) ) |
2 |
|
fnconstg |
|- ( Z e. _V -> ( B X. { Z } ) Fn B ) |
3 |
2
|
adantl |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) Fn B ) |
4 |
|
snnzg |
|- ( Z e. _V -> { Z } =/= (/) ) |
5 |
|
simpl |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) e. _V ) |
6 |
|
xpexcnv |
|- ( ( { Z } =/= (/) /\ ( B X. { Z } ) e. _V ) -> B e. _V ) |
7 |
4 5 6
|
syl2an2 |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> B e. _V ) |
8 |
|
simpr |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> Z e. _V ) |
9 |
|
fnsuppeq0 |
|- ( ( ( B X. { Z } ) Fn B /\ B e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
10 |
3 7 8 9
|
syl3anc |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
11 |
1 10
|
mpbird |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
12 |
|
supp0prc |
|- ( -. ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
13 |
11 12
|
pm2.61i |
|- ( ( B X. { Z } ) supp Z ) = (/) |