| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) = ( B X. { Z } ) ) |
| 2 |
|
fnconstg |
|- ( Z e. _V -> ( B X. { Z } ) Fn B ) |
| 3 |
2
|
adantl |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) Fn B ) |
| 4 |
|
snnzg |
|- ( Z e. _V -> { Z } =/= (/) ) |
| 5 |
|
simpl |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( B X. { Z } ) e. _V ) |
| 6 |
|
xpexcnv |
|- ( ( { Z } =/= (/) /\ ( B X. { Z } ) e. _V ) -> B e. _V ) |
| 7 |
4 5 6
|
syl2an2 |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> B e. _V ) |
| 8 |
|
simpr |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> Z e. _V ) |
| 9 |
|
fnsuppeq0 |
|- ( ( ( B X. { Z } ) Fn B /\ B e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
| 10 |
3 7 8 9
|
syl3anc |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( ( B X. { Z } ) supp Z ) = (/) <-> ( B X. { Z } ) = ( B X. { Z } ) ) ) |
| 11 |
1 10
|
mpbird |
|- ( ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
| 12 |
|
supp0prc |
|- ( -. ( ( B X. { Z } ) e. _V /\ Z e. _V ) -> ( ( B X. { Z } ) supp Z ) = (/) ) |
| 13 |
11 12
|
pm2.61i |
|- ( ( B X. { Z } ) supp Z ) = (/) |