Metamath Proof Explorer


Theorem fdmfifsupp

Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)

Ref Expression
Hypotheses fdmfisuppfi.f
|- ( ph -> F : D --> R )
fdmfisuppfi.d
|- ( ph -> D e. Fin )
fdmfisuppfi.z
|- ( ph -> Z e. V )
Assertion fdmfifsupp
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 fdmfisuppfi.f
 |-  ( ph -> F : D --> R )
2 fdmfisuppfi.d
 |-  ( ph -> D e. Fin )
3 fdmfisuppfi.z
 |-  ( ph -> Z e. V )
4 1 ffund
 |-  ( ph -> Fun F )
5 1 2 3 fdmfisuppfi
 |-  ( ph -> ( F supp Z ) e. Fin )
6 1 ffnd
 |-  ( ph -> F Fn D )
7 fnex
 |-  ( ( F Fn D /\ D e. Fin ) -> F e. _V )
8 6 2 7 syl2anc
 |-  ( ph -> F e. _V )
9 isfsupp
 |-  ( ( F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( Fun F /\ ( F supp Z ) e. Fin ) ) )
10 8 3 9 syl2anc
 |-  ( ph -> ( F finSupp Z <-> ( Fun F /\ ( F supp Z ) e. Fin ) ) )
11 4 5 10 mpbir2and
 |-  ( ph -> F finSupp Z )