Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fdmfisuppfi.f | |- ( ph -> F : D --> R ) |
|
fdmfisuppfi.d | |- ( ph -> D e. Fin ) |
||
fdmfisuppfi.z | |- ( ph -> Z e. V ) |
||
Assertion | fdmfifsupp | |- ( ph -> F finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmfisuppfi.f | |- ( ph -> F : D --> R ) |
|
2 | fdmfisuppfi.d | |- ( ph -> D e. Fin ) |
|
3 | fdmfisuppfi.z | |- ( ph -> Z e. V ) |
|
4 | 1 | ffund | |- ( ph -> Fun F ) |
5 | 1 2 3 | fdmfisuppfi | |- ( ph -> ( F supp Z ) e. Fin ) |
6 | 1 | ffnd | |- ( ph -> F Fn D ) |
7 | fnex | |- ( ( F Fn D /\ D e. Fin ) -> F e. _V ) |
|
8 | 6 2 7 | syl2anc | |- ( ph -> F e. _V ) |
9 | isfsupp | |- ( ( F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( Fun F /\ ( F supp Z ) e. Fin ) ) ) |
|
10 | 8 3 9 | syl2anc | |- ( ph -> ( F finSupp Z <-> ( Fun F /\ ( F supp Z ) e. Fin ) ) ) |
11 | 4 5 10 | mpbir2and | |- ( ph -> F finSupp Z ) |