| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f0dom0 |
|- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |
| 2 |
1
|
necon3bid |
|- ( F : X --> Y -> ( X =/= (/) <-> F =/= (/) ) ) |
| 3 |
2
|
biimpa |
|- ( ( F : X --> Y /\ X =/= (/) ) -> F =/= (/) ) |
| 4 |
|
feq3 |
|- ( Y = (/) -> ( F : X --> Y <-> F : X --> (/) ) ) |
| 5 |
|
f00 |
|- ( F : X --> (/) <-> ( F = (/) /\ X = (/) ) ) |
| 6 |
5
|
simprbi |
|- ( F : X --> (/) -> X = (/) ) |
| 7 |
4 6
|
biimtrdi |
|- ( Y = (/) -> ( F : X --> Y -> X = (/) ) ) |
| 8 |
|
nne |
|- ( -. X =/= (/) <-> X = (/) ) |
| 9 |
7 8
|
imbitrrdi |
|- ( Y = (/) -> ( F : X --> Y -> -. X =/= (/) ) ) |
| 10 |
|
imnan |
|- ( ( F : X --> Y -> -. X =/= (/) ) <-> -. ( F : X --> Y /\ X =/= (/) ) ) |
| 11 |
9 10
|
sylib |
|- ( Y = (/) -> -. ( F : X --> Y /\ X =/= (/) ) ) |
| 12 |
11
|
necon2ai |
|- ( ( F : X --> Y /\ X =/= (/) ) -> Y =/= (/) ) |
| 13 |
3 12
|
jca |
|- ( ( F : X --> Y /\ X =/= (/) ) -> ( F =/= (/) /\ Y =/= (/) ) ) |