Step |
Hyp |
Ref |
Expression |
1 |
|
f0dom0 |
|- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |
2 |
1
|
necon3bid |
|- ( F : X --> Y -> ( X =/= (/) <-> F =/= (/) ) ) |
3 |
2
|
biimpa |
|- ( ( F : X --> Y /\ X =/= (/) ) -> F =/= (/) ) |
4 |
|
feq3 |
|- ( Y = (/) -> ( F : X --> Y <-> F : X --> (/) ) ) |
5 |
|
f00 |
|- ( F : X --> (/) <-> ( F = (/) /\ X = (/) ) ) |
6 |
5
|
simprbi |
|- ( F : X --> (/) -> X = (/) ) |
7 |
4 6
|
syl6bi |
|- ( Y = (/) -> ( F : X --> Y -> X = (/) ) ) |
8 |
|
nne |
|- ( -. X =/= (/) <-> X = (/) ) |
9 |
7 8
|
syl6ibr |
|- ( Y = (/) -> ( F : X --> Y -> -. X =/= (/) ) ) |
10 |
|
imnan |
|- ( ( F : X --> Y -> -. X =/= (/) ) <-> -. ( F : X --> Y /\ X =/= (/) ) ) |
11 |
9 10
|
sylib |
|- ( Y = (/) -> -. ( F : X --> Y /\ X =/= (/) ) ) |
12 |
11
|
necon2ai |
|- ( ( F : X --> Y /\ X =/= (/) ) -> Y =/= (/) ) |
13 |
3 12
|
jca |
|- ( ( F : X --> Y /\ X =/= (/) ) -> ( F =/= (/) /\ Y =/= (/) ) ) |