Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
|- E = ( C (,) D ) |
2 |
|
fdvposlt.a |
|- ( ph -> A e. E ) |
3 |
|
fdvposlt.b |
|- ( ph -> B e. E ) |
4 |
|
fdvposlt.f |
|- ( ph -> F : E --> RR ) |
5 |
|
fdvposlt.c |
|- ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) |
6 |
|
fdvneggt.lt |
|- ( ph -> A < B ) |
7 |
|
fdvneggt.1 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) < 0 ) |
8 |
4
|
ffvelrnda |
|- ( ( ph /\ y e. E ) -> ( F ` y ) e. RR ) |
9 |
8
|
renegcld |
|- ( ( ph /\ y e. E ) -> -u ( F ` y ) e. RR ) |
10 |
9
|
fmpttd |
|- ( ph -> ( y e. E |-> -u ( F ` y ) ) : E --> RR ) |
11 |
|
reelprrecn |
|- RR e. { RR , CC } |
12 |
11
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
13 |
|
ax-resscn |
|- RR C_ CC |
14 |
13 8
|
sselid |
|- ( ( ph /\ y e. E ) -> ( F ` y ) e. CC ) |
15 |
|
fvexd |
|- ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. _V ) |
16 |
4
|
feqmptd |
|- ( ph -> F = ( y e. E |-> ( F ` y ) ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( RR _D F ) = ( RR _D ( y e. E |-> ( F ` y ) ) ) ) |
18 |
|
cncff |
|- ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) |
19 |
5 18
|
syl |
|- ( ph -> ( RR _D F ) : E --> RR ) |
20 |
19
|
feqmptd |
|- ( ph -> ( RR _D F ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) |
21 |
17 20
|
eqtr3d |
|- ( ph -> ( RR _D ( y e. E |-> ( F ` y ) ) ) = ( y e. E |-> ( ( RR _D F ) ` y ) ) ) |
22 |
12 14 15 21
|
dvmptneg |
|- ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
23 |
19
|
ffvelrnda |
|- ( ( ph /\ y e. E ) -> ( ( RR _D F ) ` y ) e. RR ) |
24 |
23
|
renegcld |
|- ( ( ph /\ y e. E ) -> -u ( ( RR _D F ) ` y ) e. RR ) |
25 |
24
|
fmpttd |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) |
26 |
|
ssid |
|- CC C_ CC |
27 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) |
28 |
13 26 27
|
mp2an |
|- ( E -cn-> RR ) C_ ( E -cn-> CC ) |
29 |
28 5
|
sselid |
|- ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) |
30 |
|
eqid |
|- ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) |
31 |
30
|
negfcncf |
|- ( ( RR _D F ) e. ( E -cn-> CC ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) |
32 |
29 31
|
syl |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) |
33 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> CC ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) |
34 |
13 32 33
|
sylancr |
|- ( ph -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) <-> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) : E --> RR ) ) |
35 |
25 34
|
mpbird |
|- ( ph -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) e. ( E -cn-> RR ) ) |
36 |
22 35
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) e. ( E -cn-> RR ) ) |
37 |
19
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) |
38 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
39 |
38
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
40 |
1 2 3
|
fct2relem |
|- ( ph -> ( A [,] B ) C_ E ) |
41 |
39 40
|
sstrd |
|- ( ph -> ( A (,) B ) C_ E ) |
42 |
41
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) |
43 |
37 42
|
ffvelrnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
44 |
43
|
lt0neg1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` x ) < 0 <-> 0 < -u ( ( RR _D F ) ` x ) ) ) |
45 |
7 44
|
mpbid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < -u ( ( RR _D F ) ` x ) ) |
46 |
22
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D ( y e. E |-> -u ( F ` y ) ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
47 |
46
|
fveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) ) |
48 |
30
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( y e. E |-> -u ( ( RR _D F ) ` y ) ) = ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ) |
49 |
|
simpr |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> y = x ) |
50 |
49
|
fveq2d |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` x ) ) |
51 |
50
|
negeqd |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ y = x ) -> -u ( ( RR _D F ) ` y ) = -u ( ( RR _D F ) ` x ) ) |
52 |
43
|
renegcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -u ( ( RR _D F ) ` x ) e. RR ) |
53 |
48 51 42 52
|
fvmptd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( y e. E |-> -u ( ( RR _D F ) ` y ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
54 |
47 53
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) = -u ( ( RR _D F ) ` x ) ) |
55 |
45 54
|
breqtrrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( RR _D ( y e. E |-> -u ( F ` y ) ) ) ` x ) ) |
56 |
1 2 3 10 36 6 55
|
fdvposlt |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) < ( ( y e. E |-> -u ( F ` y ) ) ` B ) ) |
57 |
|
eqidd |
|- ( ph -> ( y e. E |-> -u ( F ` y ) ) = ( y e. E |-> -u ( F ` y ) ) ) |
58 |
|
simpr |
|- ( ( ph /\ y = A ) -> y = A ) |
59 |
58
|
fveq2d |
|- ( ( ph /\ y = A ) -> ( F ` y ) = ( F ` A ) ) |
60 |
59
|
negeqd |
|- ( ( ph /\ y = A ) -> -u ( F ` y ) = -u ( F ` A ) ) |
61 |
4 2
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
62 |
61
|
renegcld |
|- ( ph -> -u ( F ` A ) e. RR ) |
63 |
57 60 2 62
|
fvmptd |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
64 |
|
simpr |
|- ( ( ph /\ y = B ) -> y = B ) |
65 |
64
|
fveq2d |
|- ( ( ph /\ y = B ) -> ( F ` y ) = ( F ` B ) ) |
66 |
65
|
negeqd |
|- ( ( ph /\ y = B ) -> -u ( F ` y ) = -u ( F ` B ) ) |
67 |
4 3
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. RR ) |
68 |
67
|
renegcld |
|- ( ph -> -u ( F ` B ) e. RR ) |
69 |
57 66 3 68
|
fvmptd |
|- ( ph -> ( ( y e. E |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
70 |
56 63 69
|
3brtr3d |
|- ( ph -> -u ( F ` A ) < -u ( F ` B ) ) |
71 |
67 61
|
ltnegd |
|- ( ph -> ( ( F ` B ) < ( F ` A ) <-> -u ( F ` A ) < -u ( F ` B ) ) ) |
72 |
70 71
|
mpbird |
|- ( ph -> ( F ` B ) < ( F ` A ) ) |