Metamath Proof Explorer


Theorem fdvposlt

Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d
|- E = ( C (,) D )
fdvposlt.a
|- ( ph -> A e. E )
fdvposlt.b
|- ( ph -> B e. E )
fdvposlt.f
|- ( ph -> F : E --> RR )
fdvposlt.c
|- ( ph -> ( RR _D F ) e. ( E -cn-> RR ) )
fdvposlt.lt
|- ( ph -> A < B )
fdvposlt.1
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( RR _D F ) ` x ) )
Assertion fdvposlt
|- ( ph -> ( F ` A ) < ( F ` B ) )

Proof

Step Hyp Ref Expression
1 fdvposlt.d
 |-  E = ( C (,) D )
2 fdvposlt.a
 |-  ( ph -> A e. E )
3 fdvposlt.b
 |-  ( ph -> B e. E )
4 fdvposlt.f
 |-  ( ph -> F : E --> RR )
5 fdvposlt.c
 |-  ( ph -> ( RR _D F ) e. ( E -cn-> RR ) )
6 fdvposlt.lt
 |-  ( ph -> A < B )
7 fdvposlt.1
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( RR _D F ) ` x ) )
8 ioossre
 |-  ( C (,) D ) C_ RR
9 1 8 eqsstri
 |-  E C_ RR
10 9 2 sseldi
 |-  ( ph -> A e. RR )
11 9 3 sseldi
 |-  ( ph -> B e. RR )
12 10 11 posdifd
 |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) )
13 6 12 mpbid
 |-  ( ph -> 0 < ( B - A ) )
14 10 11 6 ltled
 |-  ( ph -> A <_ B )
15 volioo
 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) )
16 10 11 14 15 syl3anc
 |-  ( ph -> ( vol ` ( A (,) B ) ) = ( B - A ) )
17 13 16 breqtrrd
 |-  ( ph -> 0 < ( vol ` ( A (,) B ) ) )
18 ioossicc
 |-  ( A (,) B ) C_ ( A [,] B )
19 18 a1i
 |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) )
20 ioombl
 |-  ( A (,) B ) e. dom vol
21 20 a1i
 |-  ( ph -> ( A (,) B ) e. dom vol )
22 cncff
 |-  ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR )
23 5 22 syl
 |-  ( ph -> ( RR _D F ) : E --> RR )
24 23 adantr
 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( RR _D F ) : E --> RR )
25 1 2 3 fct2relem
 |-  ( ph -> ( A [,] B ) C_ E )
26 25 sselda
 |-  ( ( ph /\ x e. ( A [,] B ) ) -> x e. E )
27 24 26 ffvelrnd
 |-  ( ( ph /\ x e. ( A [,] B ) ) -> ( ( RR _D F ) ` x ) e. RR )
28 ax-resscn
 |-  RR C_ CC
29 ssid
 |-  CC C_ CC
30 cncfss
 |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) )
31 28 29 30 mp2an
 |-  ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC )
32 23 25 feqresmpt
 |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) )
33 rescncf
 |-  ( ( A [,] B ) C_ E -> ( ( RR _D F ) e. ( E -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) )
34 25 5 33 sylc
 |-  ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) )
35 32 34 eqeltrrd
 |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> RR ) )
36 31 35 sseldi
 |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) )
37 cniccibl
 |-  ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 )
38 10 11 36 37 syl3anc
 |-  ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 )
39 19 21 27 38 iblss
 |-  ( ph -> ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 )
40 23 adantr
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR )
41 19 sselda
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) )
42 41 26 syldan
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. E )
43 40 42 ffvelrnd
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR )
44 elrp
 |-  ( ( ( RR _D F ) ` x ) e. RR+ <-> ( ( ( RR _D F ) ` x ) e. RR /\ 0 < ( ( RR _D F ) ` x ) ) )
45 43 7 44 sylanbrc
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR+ )
46 17 39 45 itggt0
 |-  ( ph -> 0 < S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x )
47 fss
 |-  ( ( F : E --> RR /\ RR C_ CC ) -> F : E --> CC )
48 4 28 47 sylancl
 |-  ( ph -> F : E --> CC )
49 cncfss
 |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) )
50 28 29 49 mp2an
 |-  ( E -cn-> RR ) C_ ( E -cn-> CC )
51 50 5 sseldi
 |-  ( ph -> ( RR _D F ) e. ( E -cn-> CC ) )
52 1 2 3 14 48 51 ftc2re
 |-  ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x = ( ( F ` B ) - ( F ` A ) ) )
53 46 52 breqtrd
 |-  ( ph -> 0 < ( ( F ` B ) - ( F ` A ) ) )
54 4 2 ffvelrnd
 |-  ( ph -> ( F ` A ) e. RR )
55 4 3 ffvelrnd
 |-  ( ph -> ( F ` B ) e. RR )
56 54 55 posdifd
 |-  ( ph -> ( ( F ` A ) < ( F ` B ) <-> 0 < ( ( F ` B ) - ( F ` A ) ) ) )
57 53 56 mpbird
 |-  ( ph -> ( F ` A ) < ( F ` B ) )