Step |
Hyp |
Ref |
Expression |
1 |
|
fdvposlt.d |
|- E = ( C (,) D ) |
2 |
|
fdvposlt.a |
|- ( ph -> A e. E ) |
3 |
|
fdvposlt.b |
|- ( ph -> B e. E ) |
4 |
|
fdvposlt.f |
|- ( ph -> F : E --> RR ) |
5 |
|
fdvposlt.c |
|- ( ph -> ( RR _D F ) e. ( E -cn-> RR ) ) |
6 |
|
fdvposlt.lt |
|- ( ph -> A < B ) |
7 |
|
fdvposlt.1 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( RR _D F ) ` x ) ) |
8 |
|
ioossre |
|- ( C (,) D ) C_ RR |
9 |
1 8
|
eqsstri |
|- E C_ RR |
10 |
9 2
|
sselid |
|- ( ph -> A e. RR ) |
11 |
9 3
|
sselid |
|- ( ph -> B e. RR ) |
12 |
10 11
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
13 |
6 12
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
14 |
10 11 6
|
ltled |
|- ( ph -> A <_ B ) |
15 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
16 |
10 11 14 15
|
syl3anc |
|- ( ph -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
17 |
13 16
|
breqtrrd |
|- ( ph -> 0 < ( vol ` ( A (,) B ) ) ) |
18 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
19 |
18
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
20 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
21 |
20
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
22 |
|
cncff |
|- ( ( RR _D F ) e. ( E -cn-> RR ) -> ( RR _D F ) : E --> RR ) |
23 |
5 22
|
syl |
|- ( ph -> ( RR _D F ) : E --> RR ) |
24 |
23
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( RR _D F ) : E --> RR ) |
25 |
1 2 3
|
fct2relem |
|- ( ph -> ( A [,] B ) C_ E ) |
26 |
25
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. E ) |
27 |
24 26
|
ffvelrnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
28 |
|
ax-resscn |
|- RR C_ CC |
29 |
|
ssid |
|- CC C_ CC |
30 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
31 |
28 29 30
|
mp2an |
|- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
32 |
23 25
|
feqresmpt |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) ) |
33 |
|
rescncf |
|- ( ( A [,] B ) C_ E -> ( ( RR _D F ) e. ( E -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) ) |
34 |
25 5 33
|
sylc |
|- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
35 |
32 34
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
36 |
31 35
|
sselid |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
37 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
38 |
10 11 36 37
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
39 |
19 21 27 38
|
iblss |
|- ( ph -> ( x e. ( A (,) B ) |-> ( ( RR _D F ) ` x ) ) e. L^1 ) |
40 |
23
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( RR _D F ) : E --> RR ) |
41 |
19
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
42 |
41 26
|
syldan |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. E ) |
43 |
40 42
|
ffvelrnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
44 |
|
elrp |
|- ( ( ( RR _D F ) ` x ) e. RR+ <-> ( ( ( RR _D F ) ` x ) e. RR /\ 0 < ( ( RR _D F ) ` x ) ) ) |
45 |
43 7 44
|
sylanbrc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR+ ) |
46 |
17 39 45
|
itggt0 |
|- ( ph -> 0 < S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x ) |
47 |
|
fss |
|- ( ( F : E --> RR /\ RR C_ CC ) -> F : E --> CC ) |
48 |
4 28 47
|
sylancl |
|- ( ph -> F : E --> CC ) |
49 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( E -cn-> RR ) C_ ( E -cn-> CC ) ) |
50 |
28 29 49
|
mp2an |
|- ( E -cn-> RR ) C_ ( E -cn-> CC ) |
51 |
50 5
|
sselid |
|- ( ph -> ( RR _D F ) e. ( E -cn-> CC ) ) |
52 |
1 2 3 14 48 51
|
ftc2re |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` x ) _d x = ( ( F ` B ) - ( F ` A ) ) ) |
53 |
46 52
|
breqtrd |
|- ( ph -> 0 < ( ( F ` B ) - ( F ` A ) ) ) |
54 |
4 2
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
55 |
4 3
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. RR ) |
56 |
54 55
|
posdifd |
|- ( ph -> ( ( F ` A ) < ( F ` B ) <-> 0 < ( ( F ` B ) - ( F ` A ) ) ) ) |
57 |
53 56
|
mpbird |
|- ( ph -> ( F ` A ) < ( F ` B ) ) |