Metamath Proof Explorer


Theorem felapton

Description: "Felapton", one of the syllogisms of Aristotelian logic. No ph is ps , all ph is ch , and some ph exist, therefore some ch is not ps . Instance of darapti . In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016)

Ref Expression
Hypotheses felapton.maj
|- A. x ( ph -> -. ps )
felapton.min
|- A. x ( ph -> ch )
felapton.e
|- E. x ph
Assertion felapton
|- E. x ( ch /\ -. ps )

Proof

Step Hyp Ref Expression
1 felapton.maj
 |-  A. x ( ph -> -. ps )
2 felapton.min
 |-  A. x ( ph -> ch )
3 felapton.e
 |-  E. x ph
4 1 2 3 darapti
 |-  E. x ( ch /\ -. ps )