Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( F : A --> B /\ (/) e/ B ) -> F : A --> B ) |
2 |
1
|
ffvelcdmda |
|- ( ( ( F : A --> B /\ (/) e/ B ) /\ X e. A ) -> ( F ` X ) e. B ) |
3 |
2
|
ex |
|- ( ( F : A --> B /\ (/) e/ B ) -> ( X e. A -> ( F ` X ) e. B ) ) |
4 |
|
df-nel |
|- ( (/) e/ B <-> -. (/) e. B ) |
5 |
|
nelelne |
|- ( -. (/) e. B -> ( ( F ` X ) e. B -> ( F ` X ) =/= (/) ) ) |
6 |
4 5
|
sylbi |
|- ( (/) e/ B -> ( ( F ` X ) e. B -> ( F ` X ) =/= (/) ) ) |
7 |
|
fdm |
|- ( F : A --> B -> dom F = A ) |
8 |
|
fvfundmfvn0 |
|- ( ( F ` X ) =/= (/) -> ( X e. dom F /\ Fun ( F |` { X } ) ) ) |
9 |
|
simprl |
|- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> X e. dom F ) |
10 |
|
simpl |
|- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> dom F = A ) |
11 |
9 10
|
eleqtrd |
|- ( ( dom F = A /\ ( X e. dom F /\ Fun ( F |` { X } ) ) ) -> X e. A ) |
12 |
11
|
ex |
|- ( dom F = A -> ( ( X e. dom F /\ Fun ( F |` { X } ) ) -> X e. A ) ) |
13 |
7 8 12
|
syl2im |
|- ( F : A --> B -> ( ( F ` X ) =/= (/) -> X e. A ) ) |
14 |
6 13
|
sylan9r |
|- ( ( F : A --> B /\ (/) e/ B ) -> ( ( F ` X ) e. B -> X e. A ) ) |
15 |
3 14
|
impbid |
|- ( ( F : A --> B /\ (/) e/ B ) -> ( X e. A <-> ( F ` X ) e. B ) ) |