Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fences3 | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( ElDisj A /\ -. (/) e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj2 | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ElDisj A ) |
|
2 | n0eldmqseq | |- ( ( dom R /. R ) = A -> -. (/) e. A ) |
|
3 | 2 | adantl | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> -. (/) e. A ) |
4 | 1 3 | jca | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( ElDisj A /\ -. (/) e. A ) ) |