Metamath Proof Explorer


Theorem fences3

Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion fences3
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( ElDisj A /\ -. (/) e. A ) )

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2
 |-  ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ElDisj A )
2 n0eldmqseq
 |-  ( ( dom R /. R ) = A -> -. (/) e. A )
3 2 adantl
 |-  ( ( EqvRel R /\ ( dom R /. R ) = A ) -> -. (/) e. A )
4 1 3 jca
 |-  ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( ElDisj A /\ -. (/) e. A ) )