Metamath Proof Explorer


Theorem feq1dd

Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses feq1dd.eq
|- ( ph -> F = G )
feq1dd.f
|- ( ph -> F : A --> B )
Assertion feq1dd
|- ( ph -> G : A --> B )

Proof

Step Hyp Ref Expression
1 feq1dd.eq
 |-  ( ph -> F = G )
2 feq1dd.f
 |-  ( ph -> F : A --> B )
3 1 feq1d
 |-  ( ph -> ( F : A --> B <-> G : A --> B ) )
4 2 3 mpbid
 |-  ( ph -> G : A --> B )