Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | feq1dd.eq | |- ( ph -> F = G ) |
|
feq1dd.f | |- ( ph -> F : A --> B ) |
||
Assertion | feq1dd | |- ( ph -> G : A --> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1dd.eq | |- ( ph -> F = G ) |
|
2 | feq1dd.f | |- ( ph -> F : A --> B ) |
|
3 | 1 | feq1d | |- ( ph -> ( F : A --> B <-> G : A --> B ) ) |
4 | 2 3 | mpbid | |- ( ph -> G : A --> B ) |