Metamath Proof Explorer


Theorem feq23i

Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses feq23i.1
|- A = C
feq23i.2
|- B = D
Assertion feq23i
|- ( F : A --> B <-> F : C --> D )

Proof

Step Hyp Ref Expression
1 feq23i.1
 |-  A = C
2 feq23i.2
 |-  B = D
3 feq23
 |-  ( ( A = C /\ B = D ) -> ( F : A --> B <-> F : C --> D ) )
4 1 2 3 mp2an
 |-  ( F : A --> B <-> F : C --> D )