Description: Deduction form of dffn5 . (Contributed by Mario Carneiro, 8-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | feqmptd.1 | |- ( ph -> F : A --> B ) |
|
Assertion | feqmptd | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | |- ( ph -> F : A --> B ) |
|
2 | 1 | ffnd | |- ( ph -> F Fn A ) |
3 | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
|
4 | 2 3 | sylib | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |