Step |
Hyp |
Ref |
Expression |
1 |
|
feqmptdf.1 |
|- F/_ x A |
2 |
|
feqmptdf.2 |
|- F/_ x F |
3 |
|
feqmptdf.3 |
|- ( ph -> F : A --> B ) |
4 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
5 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
6 |
|
nfcv |
|- F/_ y F |
7 |
2 6
|
dfrel4 |
|- ( Rel F <-> F = { <. x , y >. | x F y } ) |
8 |
5 7
|
sylib |
|- ( F Fn A -> F = { <. x , y >. | x F y } ) |
9 |
2 1
|
nffn |
|- F/ x F Fn A |
10 |
|
nfv |
|- F/ y F Fn A |
11 |
|
fnbr |
|- ( ( F Fn A /\ x F y ) -> x e. A ) |
12 |
11
|
ex |
|- ( F Fn A -> ( x F y -> x e. A ) ) |
13 |
12
|
pm4.71rd |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) |
14 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
15 |
|
fnbrfvb |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
16 |
14 15
|
syl5bb |
|- ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
17 |
16
|
pm5.32da |
|- ( F Fn A -> ( ( x e. A /\ y = ( F ` x ) ) <-> ( x e. A /\ x F y ) ) ) |
18 |
13 17
|
bitr4d |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ` x ) ) ) ) |
19 |
9 10 18
|
opabbid |
|- ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
20 |
8 19
|
eqtrd |
|- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
21 |
|
df-mpt |
|- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
22 |
20 21
|
eqtr4di |
|- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
23 |
3 4 22
|
3syl |
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |