Metamath Proof Explorer


Theorem feqmptdf

Description: Deduction form of dffn5f . (Contributed by Mario Carneiro, 8-Jan-2015) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses feqmptdf.1
|- F/_ x A
feqmptdf.2
|- F/_ x F
feqmptdf.3
|- ( ph -> F : A --> B )
Assertion feqmptdf
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 feqmptdf.1
 |-  F/_ x A
2 feqmptdf.2
 |-  F/_ x F
3 feqmptdf.3
 |-  ( ph -> F : A --> B )
4 ffn
 |-  ( F : A --> B -> F Fn A )
5 fnrel
 |-  ( F Fn A -> Rel F )
6 nfcv
 |-  F/_ y F
7 2 6 dfrel4
 |-  ( Rel F <-> F = { <. x , y >. | x F y } )
8 5 7 sylib
 |-  ( F Fn A -> F = { <. x , y >. | x F y } )
9 2 1 nffn
 |-  F/ x F Fn A
10 nfv
 |-  F/ y F Fn A
11 fnbr
 |-  ( ( F Fn A /\ x F y ) -> x e. A )
12 11 ex
 |-  ( F Fn A -> ( x F y -> x e. A ) )
13 12 pm4.71rd
 |-  ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) )
14 eqcom
 |-  ( y = ( F ` x ) <-> ( F ` x ) = y )
15 fnbrfvb
 |-  ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) )
16 14 15 bitrid
 |-  ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) )
17 16 pm5.32da
 |-  ( F Fn A -> ( ( x e. A /\ y = ( F ` x ) ) <-> ( x e. A /\ x F y ) ) )
18 13 17 bitr4d
 |-  ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ` x ) ) ) )
19 9 10 18 opabbid
 |-  ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } )
20 8 19 eqtrd
 |-  ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } )
21 df-mpt
 |-  ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) }
22 20 21 eqtr4di
 |-  ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) )
23 3 4 22 3syl
 |-  ( ph -> F = ( x e. A |-> ( F ` x ) ) )