| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 2 |  | dvdsmodexp |  |-  ( ( P e. NN /\ P e. NN /\ P || A ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) | 
						
							| 3 | 2 | 3exp |  |-  ( P e. NN -> ( P e. NN -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) ) | 
						
							| 4 | 1 1 3 | sylc |  |-  ( P e. Prime -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) | 
						
							| 6 |  | coprm |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) | 
						
							| 7 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 8 |  | gcdcom |  |-  ( ( P e. ZZ /\ A e. ZZ ) -> ( P gcd A ) = ( A gcd P ) ) | 
						
							| 9 | 7 8 | sylan |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P gcd A ) = ( A gcd P ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( P gcd A ) = 1 <-> ( A gcd P ) = 1 ) ) | 
						
							| 11 | 6 10 | bitrd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( A gcd P ) = 1 ) ) | 
						
							| 12 |  | simp2 |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> A e. ZZ ) | 
						
							| 13 | 1 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> P e. NN ) | 
						
							| 14 | 13 | phicld |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) e. NN ) | 
						
							| 15 | 14 | nnnn0d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) e. NN0 ) | 
						
							| 16 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) | 
						
							| 17 | 12 15 16 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) | 
						
							| 18 | 17 | zred |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) e. RR ) | 
						
							| 19 |  | 1red |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> 1 e. RR ) | 
						
							| 20 | 13 | nnrpd |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> P e. RR+ ) | 
						
							| 21 |  | eulerth |  |-  ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 22 | 1 21 | syl3an1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 23 |  | modmul1 |  |-  ( ( ( ( A ^ ( phi ` P ) ) e. RR /\ 1 e. RR ) /\ ( A e. ZZ /\ P e. RR+ ) /\ ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( 1 x. A ) mod P ) ) | 
						
							| 24 | 18 19 12 20 22 23 | syl221anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( 1 x. A ) mod P ) ) | 
						
							| 25 |  | phiprm |  |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( P - 1 ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) x. A ) = ( ( A ^ ( P - 1 ) ) x. A ) ) | 
						
							| 29 | 12 | zcnd |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> A e. CC ) | 
						
							| 30 |  | expm1t |  |-  ( ( A e. CC /\ P e. NN ) -> ( A ^ P ) = ( ( A ^ ( P - 1 ) ) x. A ) ) | 
						
							| 31 | 29 13 30 | syl2anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( A ^ P ) = ( ( A ^ ( P - 1 ) ) x. A ) ) | 
						
							| 32 | 28 31 | eqtr4d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) x. A ) = ( A ^ P ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( ( A ^ ( phi ` P ) ) x. A ) mod P ) = ( ( A ^ P ) mod P ) ) | 
						
							| 34 | 29 | mullidd |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( 1 x. A ) = A ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( 1 x. A ) mod P ) = ( A mod P ) ) | 
						
							| 36 | 24 33 35 | 3eqtr3d |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) | 
						
							| 37 | 36 | 3expia |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A gcd P ) = 1 -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) | 
						
							| 38 | 11 37 | sylbid |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A -> ( ( A ^ P ) mod P ) = ( A mod P ) ) ) | 
						
							| 39 | 5 38 | pm2.61d |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ P ) mod P ) = ( A mod P ) ) |