Metamath Proof Explorer


Theorem fesapo

Description: "Fesapo", one of the syllogisms of Aristotelian logic. No ph is ps , all ps is ch , and ps exist, therefore some ch is not ph . In Aristotelian notation, EAO-4: PeM and MaS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses fesapo.maj
|- A. x ( ph -> -. ps )
fesapo.min
|- A. x ( ps -> ch )
fesapo.e
|- E. x ps
Assertion fesapo
|- E. x ( ch /\ -. ph )

Proof

Step Hyp Ref Expression
1 fesapo.maj
 |-  A. x ( ph -> -. ps )
2 fesapo.min
 |-  A. x ( ps -> ch )
3 fesapo.e
 |-  E. x ps
4 con2
 |-  ( ( ph -> -. ps ) -> ( ps -> -. ph ) )
5 4 alimi
 |-  ( A. x ( ph -> -. ps ) -> A. x ( ps -> -. ph ) )
6 1 5 ax-mp
 |-  A. x ( ps -> -. ph )
7 6 2 3 felapton
 |-  E. x ( ch /\ -. ph )