Description: If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fex | |- ( ( F : A --> B /\ A e. C ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | fnex | |- ( ( F Fn A /\ A e. C ) -> F e. _V ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A --> B /\ A e. C ) -> F e. _V ) |