Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ffdm | |- ( F : A --> B -> ( F : dom F --> B /\ dom F C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm | |- ( F : A --> B -> dom F = A ) |
|
2 | 1 | feq2d | |- ( F : A --> B -> ( F : dom F --> B <-> F : A --> B ) ) |
3 | 2 | ibir | |- ( F : A --> B -> F : dom F --> B ) |
4 | eqimss | |- ( dom F = A -> dom F C_ A ) |
|
5 | 1 4 | syl | |- ( F : A --> B -> dom F C_ A ) |
6 | 3 5 | jca | |- ( F : A --> B -> ( F : dom F --> B /\ dom F C_ A ) ) |