Metamath Proof Explorer


Theorem ffdm

Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)

Ref Expression
Assertion ffdm
|- ( F : A --> B -> ( F : dom F --> B /\ dom F C_ A ) )

Proof

Step Hyp Ref Expression
1 fdm
 |-  ( F : A --> B -> dom F = A )
2 1 feq2d
 |-  ( F : A --> B -> ( F : dom F --> B <-> F : A --> B ) )
3 2 ibir
 |-  ( F : A --> B -> F : dom F --> B )
4 eqimss
 |-  ( dom F = A -> dom F C_ A )
5 1 4 syl
 |-  ( F : A --> B -> dom F C_ A )
6 3 5 jca
 |-  ( F : A --> B -> ( F : dom F --> B /\ dom F C_ A ) )