| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffnfvf.1 |  |-  F/_ x A | 
						
							| 2 |  | ffnfvf.2 |  |-  F/_ x B | 
						
							| 3 |  | ffnfvf.3 |  |-  F/_ x F | 
						
							| 4 |  | ffnfv |  |-  ( F : A --> B <-> ( F Fn A /\ A. z e. A ( F ` z ) e. B ) ) | 
						
							| 5 |  | nfcv |  |-  F/_ z A | 
						
							| 6 |  | nfcv |  |-  F/_ x z | 
						
							| 7 | 3 6 | nffv |  |-  F/_ x ( F ` z ) | 
						
							| 8 | 7 2 | nfel |  |-  F/ x ( F ` z ) e. B | 
						
							| 9 |  | nfv |  |-  F/ z ( F ` x ) e. B | 
						
							| 10 |  | fveq2 |  |-  ( z = x -> ( F ` z ) = ( F ` x ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( z = x -> ( ( F ` z ) e. B <-> ( F ` x ) e. B ) ) | 
						
							| 12 | 5 1 8 9 11 | cbvralfw |  |-  ( A. z e. A ( F ` z ) e. B <-> A. x e. A ( F ` x ) e. B ) | 
						
							| 13 | 12 | anbi2i |  |-  ( ( F Fn A /\ A. z e. A ( F ` z ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) | 
						
							| 14 | 4 13 | bitri |  |-  ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |