Step |
Hyp |
Ref |
Expression |
1 |
|
f11o.1 |
|- F e. _V |
2 |
|
df-f |
|- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
3 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
4 |
3
|
anbi1i |
|- ( ( F Fn A /\ ran F C_ B ) <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) |
5 |
2 4
|
bitri |
|- ( F : A --> B <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) |
6 |
1
|
rnex |
|- ran F e. _V |
7 |
|
foeq3 |
|- ( x = ran F -> ( F : A -onto-> x <-> F : A -onto-> ran F ) ) |
8 |
|
sseq1 |
|- ( x = ran F -> ( x C_ B <-> ran F C_ B ) ) |
9 |
7 8
|
anbi12d |
|- ( x = ran F -> ( ( F : A -onto-> x /\ x C_ B ) <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) ) |
10 |
6 9
|
spcev |
|- ( ( F : A -onto-> ran F /\ ran F C_ B ) -> E. x ( F : A -onto-> x /\ x C_ B ) ) |
11 |
5 10
|
sylbi |
|- ( F : A --> B -> E. x ( F : A -onto-> x /\ x C_ B ) ) |
12 |
|
fof |
|- ( F : A -onto-> x -> F : A --> x ) |
13 |
|
fss |
|- ( ( F : A --> x /\ x C_ B ) -> F : A --> B ) |
14 |
12 13
|
sylan |
|- ( ( F : A -onto-> x /\ x C_ B ) -> F : A --> B ) |
15 |
14
|
exlimiv |
|- ( E. x ( F : A -onto-> x /\ x C_ B ) -> F : A --> B ) |
16 |
11 15
|
impbii |
|- ( F : A --> B <-> E. x ( F : A -onto-> x /\ x C_ B ) ) |