Metamath Proof Explorer


Theorem ffs2

Description: Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypothesis ffs2.1
|- C = ( B \ { Z } )
Assertion ffs2
|- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) )

Proof

Step Hyp Ref Expression
1 ffs2.1
 |-  C = ( B \ { Z } )
2 frnsuppeq
 |-  ( ( A e. V /\ Z e. W ) -> ( F : A --> B -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) ) )
3 2 3impia
 |-  ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) )
4 1 imaeq2i
 |-  ( `' F " C ) = ( `' F " ( B \ { Z } ) )
5 3 4 eqtr4di
 |-  ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) )