Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ffs2.1 | |- C = ( B \ { Z } ) | |
| Assertion | ffs2 | |- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ffs2.1 |  |-  C = ( B \ { Z } ) | |
| 2 | fsuppeq |  |-  ( ( A e. V /\ Z e. W ) -> ( F : A --> B -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) ) ) | |
| 3 | 2 | 3impia |  |-  ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) ) | 
| 4 | 1 | imaeq2i |  |-  ( `' F " C ) = ( `' F " ( B \ { Z } ) ) | 
| 5 | 3 4 | eqtr4di | |- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) ) |