Description: Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ffs2.1 | |- C = ( B \ { Z } ) |
|
Assertion | ffs2 | |- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffs2.1 | |- C = ( B \ { Z } ) |
|
2 | frnsuppeq | |- ( ( A e. V /\ Z e. W ) -> ( F : A --> B -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) ) ) |
|
3 | 2 | 3impia | |- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " ( B \ { Z } ) ) ) |
4 | 1 | imaeq2i | |- ( `' F " C ) = ( `' F " ( B \ { Z } ) ) |
5 | 3 4 | eqtr4di | |- ( ( A e. V /\ Z e. W /\ F : A --> B ) -> ( F supp Z ) = ( `' F " C ) ) |