Step |
Hyp |
Ref |
Expression |
1 |
|
ffsrn.z |
|- ( ph -> Z e. W ) |
2 |
|
ffsrn.0 |
|- ( ph -> F e. V ) |
3 |
|
ffsrn.1 |
|- ( ph -> Fun F ) |
4 |
|
ffsrn.2 |
|- ( ph -> ( F supp Z ) e. Fin ) |
5 |
|
dfdm4 |
|- dom F = ran `' F |
6 |
|
dfrn4 |
|- ran `' F = ( `' F " _V ) |
7 |
5 6
|
eqtri |
|- dom F = ( `' F " _V ) |
8 |
|
df-fn |
|- ( F Fn ( `' F " _V ) <-> ( Fun F /\ dom F = ( `' F " _V ) ) ) |
9 |
|
fnresdm |
|- ( F Fn ( `' F " _V ) -> ( F |` ( `' F " _V ) ) = F ) |
10 |
8 9
|
sylbir |
|- ( ( Fun F /\ dom F = ( `' F " _V ) ) -> ( F |` ( `' F " _V ) ) = F ) |
11 |
3 7 10
|
sylancl |
|- ( ph -> ( F |` ( `' F " _V ) ) = F ) |
12 |
|
imaundi |
|- ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) |
13 |
12
|
reseq2i |
|- ( F |` ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) ) = ( F |` ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) ) |
14 |
|
undif1 |
|- ( ( _V \ { Z } ) u. { Z } ) = ( _V u. { Z } ) |
15 |
|
ssv |
|- { Z } C_ _V |
16 |
|
ssequn2 |
|- ( { Z } C_ _V <-> ( _V u. { Z } ) = _V ) |
17 |
15 16
|
mpbi |
|- ( _V u. { Z } ) = _V |
18 |
14 17
|
eqtri |
|- ( ( _V \ { Z } ) u. { Z } ) = _V |
19 |
18
|
imaeq2i |
|- ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) = ( `' F " _V ) |
20 |
19
|
reseq2i |
|- ( F |` ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) ) = ( F |` ( `' F " _V ) ) |
21 |
|
resundi |
|- ( F |` ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) ) = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) |
22 |
13 20 21
|
3eqtr3i |
|- ( F |` ( `' F " _V ) ) = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) |
23 |
11 22
|
eqtr3di |
|- ( ph -> F = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) ) |
24 |
23
|
rneqd |
|- ( ph -> ran F = ran ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) ) |
25 |
|
rnun |
|- ran ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) = ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) |
26 |
24 25
|
eqtrdi |
|- ( ph -> ran F = ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) ) |
27 |
|
suppimacnv |
|- ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
28 |
2 1 27
|
syl2anc |
|- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
29 |
28 4
|
eqeltrrd |
|- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
30 |
|
cnvexg |
|- ( F e. V -> `' F e. _V ) |
31 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " ( _V \ { Z } ) ) e. _V ) |
32 |
2 30 31
|
3syl |
|- ( ph -> ( `' F " ( _V \ { Z } ) ) e. _V ) |
33 |
|
cnvimass |
|- ( `' F " ( _V \ { Z } ) ) C_ dom F |
34 |
|
fores |
|- ( ( Fun F /\ ( `' F " ( _V \ { Z } ) ) C_ dom F ) -> ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) ) |
35 |
3 33 34
|
sylancl |
|- ( ph -> ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) ) |
36 |
|
fofn |
|- ( ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) -> ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) ) |
37 |
35 36
|
syl |
|- ( ph -> ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) ) |
38 |
|
fnrndomg |
|- ( ( `' F " ( _V \ { Z } ) ) e. _V -> ( ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) ) |
39 |
32 37 38
|
sylc |
|- ( ph -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) |
40 |
|
domfi |
|- ( ( ( `' F " ( _V \ { Z } ) ) e. Fin /\ ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
41 |
29 39 40
|
syl2anc |
|- ( ph -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
42 |
|
snfi |
|- { Z } e. Fin |
43 |
|
df-ima |
|- ( F " ( `' F " { Z } ) ) = ran ( F |` ( `' F " { Z } ) ) |
44 |
|
funimacnv |
|- ( Fun F -> ( F " ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) |
45 |
3 44
|
syl |
|- ( ph -> ( F " ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) |
46 |
43 45
|
eqtr3id |
|- ( ph -> ran ( F |` ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) |
47 |
|
inss1 |
|- ( { Z } i^i ran F ) C_ { Z } |
48 |
46 47
|
eqsstrdi |
|- ( ph -> ran ( F |` ( `' F " { Z } ) ) C_ { Z } ) |
49 |
|
ssfi |
|- ( ( { Z } e. Fin /\ ran ( F |` ( `' F " { Z } ) ) C_ { Z } ) -> ran ( F |` ( `' F " { Z } ) ) e. Fin ) |
50 |
42 48 49
|
sylancr |
|- ( ph -> ran ( F |` ( `' F " { Z } ) ) e. Fin ) |
51 |
|
unfi |
|- ( ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin /\ ran ( F |` ( `' F " { Z } ) ) e. Fin ) -> ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) e. Fin ) |
52 |
41 50 51
|
syl2anc |
|- ( ph -> ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) e. Fin ) |
53 |
26 52
|
eqeltrd |
|- ( ph -> ran F e. Fin ) |