| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffsrn.z |  |-  ( ph -> Z e. W ) | 
						
							| 2 |  | ffsrn.0 |  |-  ( ph -> F e. V ) | 
						
							| 3 |  | ffsrn.1 |  |-  ( ph -> Fun F ) | 
						
							| 4 |  | ffsrn.2 |  |-  ( ph -> ( F supp Z ) e. Fin ) | 
						
							| 5 |  | dfdm4 |  |-  dom F = ran `' F | 
						
							| 6 |  | dfrn4 |  |-  ran `' F = ( `' F " _V ) | 
						
							| 7 | 5 6 | eqtri |  |-  dom F = ( `' F " _V ) | 
						
							| 8 |  | df-fn |  |-  ( F Fn ( `' F " _V ) <-> ( Fun F /\ dom F = ( `' F " _V ) ) ) | 
						
							| 9 |  | fnresdm |  |-  ( F Fn ( `' F " _V ) -> ( F |` ( `' F " _V ) ) = F ) | 
						
							| 10 | 8 9 | sylbir |  |-  ( ( Fun F /\ dom F = ( `' F " _V ) ) -> ( F |` ( `' F " _V ) ) = F ) | 
						
							| 11 | 3 7 10 | sylancl |  |-  ( ph -> ( F |` ( `' F " _V ) ) = F ) | 
						
							| 12 |  | imaundi |  |-  ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) | 
						
							| 13 | 12 | reseq2i |  |-  ( F |` ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) ) = ( F |` ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) ) | 
						
							| 14 |  | undif1 |  |-  ( ( _V \ { Z } ) u. { Z } ) = ( _V u. { Z } ) | 
						
							| 15 |  | ssv |  |-  { Z } C_ _V | 
						
							| 16 |  | ssequn2 |  |-  ( { Z } C_ _V <-> ( _V u. { Z } ) = _V ) | 
						
							| 17 | 15 16 | mpbi |  |-  ( _V u. { Z } ) = _V | 
						
							| 18 | 14 17 | eqtri |  |-  ( ( _V \ { Z } ) u. { Z } ) = _V | 
						
							| 19 | 18 | imaeq2i |  |-  ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) = ( `' F " _V ) | 
						
							| 20 | 19 | reseq2i |  |-  ( F |` ( `' F " ( ( _V \ { Z } ) u. { Z } ) ) ) = ( F |` ( `' F " _V ) ) | 
						
							| 21 |  | resundi |  |-  ( F |` ( ( `' F " ( _V \ { Z } ) ) u. ( `' F " { Z } ) ) ) = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) | 
						
							| 22 | 13 20 21 | 3eqtr3i |  |-  ( F |` ( `' F " _V ) ) = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) | 
						
							| 23 | 11 22 | eqtr3di |  |-  ( ph -> F = ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) ) | 
						
							| 24 | 23 | rneqd |  |-  ( ph -> ran F = ran ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) ) | 
						
							| 25 |  | rnun |  |-  ran ( ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ( F |` ( `' F " { Z } ) ) ) = ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) | 
						
							| 26 | 24 25 | eqtrdi |  |-  ( ph -> ran F = ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) ) | 
						
							| 27 |  | suppimacnv |  |-  ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 28 | 2 1 27 | syl2anc |  |-  ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 29 | 28 4 | eqeltrrd |  |-  ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) | 
						
							| 30 |  | cnvexg |  |-  ( F e. V -> `' F e. _V ) | 
						
							| 31 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " ( _V \ { Z } ) ) e. _V ) | 
						
							| 32 | 2 30 31 | 3syl |  |-  ( ph -> ( `' F " ( _V \ { Z } ) ) e. _V ) | 
						
							| 33 |  | cnvimass |  |-  ( `' F " ( _V \ { Z } ) ) C_ dom F | 
						
							| 34 |  | fores |  |-  ( ( Fun F /\ ( `' F " ( _V \ { Z } ) ) C_ dom F ) -> ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) ) | 
						
							| 35 | 3 33 34 | sylancl |  |-  ( ph -> ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) ) | 
						
							| 36 |  | fofn |  |-  ( ( F |` ( `' F " ( _V \ { Z } ) ) ) : ( `' F " ( _V \ { Z } ) ) -onto-> ( F " ( `' F " ( _V \ { Z } ) ) ) -> ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 38 |  | fnrndomg |  |-  ( ( `' F " ( _V \ { Z } ) ) e. _V -> ( ( F |` ( `' F " ( _V \ { Z } ) ) ) Fn ( `' F " ( _V \ { Z } ) ) -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) ) | 
						
							| 39 | 32 37 38 | sylc |  |-  ( ph -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 40 |  | domfi |  |-  ( ( ( `' F " ( _V \ { Z } ) ) e. Fin /\ ran ( F |` ( `' F " ( _V \ { Z } ) ) ) ~<_ ( `' F " ( _V \ { Z } ) ) ) -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin ) | 
						
							| 41 | 29 39 40 | syl2anc |  |-  ( ph -> ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin ) | 
						
							| 42 |  | snfi |  |-  { Z } e. Fin | 
						
							| 43 |  | df-ima |  |-  ( F " ( `' F " { Z } ) ) = ran ( F |` ( `' F " { Z } ) ) | 
						
							| 44 |  | funimacnv |  |-  ( Fun F -> ( F " ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) | 
						
							| 45 | 3 44 | syl |  |-  ( ph -> ( F " ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) | 
						
							| 46 | 43 45 | eqtr3id |  |-  ( ph -> ran ( F |` ( `' F " { Z } ) ) = ( { Z } i^i ran F ) ) | 
						
							| 47 |  | inss1 |  |-  ( { Z } i^i ran F ) C_ { Z } | 
						
							| 48 | 46 47 | eqsstrdi |  |-  ( ph -> ran ( F |` ( `' F " { Z } ) ) C_ { Z } ) | 
						
							| 49 |  | ssfi |  |-  ( ( { Z } e. Fin /\ ran ( F |` ( `' F " { Z } ) ) C_ { Z } ) -> ran ( F |` ( `' F " { Z } ) ) e. Fin ) | 
						
							| 50 | 42 48 49 | sylancr |  |-  ( ph -> ran ( F |` ( `' F " { Z } ) ) e. Fin ) | 
						
							| 51 |  | unfi |  |-  ( ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) e. Fin /\ ran ( F |` ( `' F " { Z } ) ) e. Fin ) -> ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) e. Fin ) | 
						
							| 52 | 41 50 51 | syl2anc |  |-  ( ph -> ( ran ( F |` ( `' F " ( _V \ { Z } ) ) ) u. ran ( F |` ( `' F " { Z } ) ) ) e. Fin ) | 
						
							| 53 | 26 52 | eqeltrd |  |-  ( ph -> ran F e. Fin ) |