Step |
Hyp |
Ref |
Expression |
1 |
|
ffthres2c.a |
|- A = ( Base ` C ) |
2 |
|
ffthres2c.e |
|- E = ( D |`s S ) |
3 |
|
ffthres2c.d |
|- ( ph -> D e. Cat ) |
4 |
|
ffthres2c.r |
|- ( ph -> S e. V ) |
5 |
|
ffthres2c.1 |
|- ( ph -> F : A --> S ) |
6 |
1 2 3 4 5
|
fullres2c |
|- ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) ) |
7 |
1 2 3 4 5
|
fthres2c |
|- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |
8 |
6 7
|
anbi12d |
|- ( ph -> ( ( F ( C Full D ) G /\ F ( C Faith D ) G ) <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) ) |
9 |
|
brin |
|- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
10 |
|
brin |
|- ( F ( ( C Full E ) i^i ( C Faith E ) ) G <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) |
11 |
8 9 10
|
3bitr4g |
|- ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) ) |