Metamath Proof Explorer


Theorem ffthres2c

Description: Condition for a fully faithful functor to also be a fully faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses ffthres2c.a
|- A = ( Base ` C )
ffthres2c.e
|- E = ( D |`s S )
ffthres2c.d
|- ( ph -> D e. Cat )
ffthres2c.r
|- ( ph -> S e. V )
ffthres2c.1
|- ( ph -> F : A --> S )
Assertion ffthres2c
|- ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) )

Proof

Step Hyp Ref Expression
1 ffthres2c.a
 |-  A = ( Base ` C )
2 ffthres2c.e
 |-  E = ( D |`s S )
3 ffthres2c.d
 |-  ( ph -> D e. Cat )
4 ffthres2c.r
 |-  ( ph -> S e. V )
5 ffthres2c.1
 |-  ( ph -> F : A --> S )
6 1 2 3 4 5 fullres2c
 |-  ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) )
7 1 2 3 4 5 fthres2c
 |-  ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) )
8 6 7 anbi12d
 |-  ( ph -> ( ( F ( C Full D ) G /\ F ( C Faith D ) G ) <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) )
9 brin
 |-  ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) )
10 brin
 |-  ( F ( ( C Full E ) i^i ( C Faith E ) ) G <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) )
11 8 9 10 3bitr4g
 |-  ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) )