| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffthres2c.a |
|- A = ( Base ` C ) |
| 2 |
|
ffthres2c.e |
|- E = ( D |`s S ) |
| 3 |
|
ffthres2c.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
ffthres2c.r |
|- ( ph -> S e. V ) |
| 5 |
|
ffthres2c.1 |
|- ( ph -> F : A --> S ) |
| 6 |
1 2 3 4 5
|
fullres2c |
|- ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) ) |
| 7 |
1 2 3 4 5
|
fthres2c |
|- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |
| 8 |
6 7
|
anbi12d |
|- ( ph -> ( ( F ( C Full D ) G /\ F ( C Faith D ) G ) <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) ) |
| 9 |
|
brin |
|- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
| 10 |
|
brin |
|- ( F ( ( C Full E ) i^i ( C Faith E ) ) G <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) |
| 11 |
8 9 10
|
3bitr4g |
|- ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) ) |