Metamath Proof Explorer


Theorem ffund

Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ffund.1
|- ( ph -> F : A --> B )
Assertion ffund
|- ( ph -> Fun F )

Proof

Step Hyp Ref Expression
1 ffund.1
 |-  ( ph -> F : A --> B )
2 ffun
 |-  ( F : A --> B -> Fun F )
3 1 2 syl
 |-  ( ph -> Fun F )