Description: A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffvelcdm | |- ( ( F : A --> B /\ C e. A ) -> ( F ` C ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | fnfvelrn | |- ( ( F Fn A /\ C e. A ) -> ( F ` C ) e. ran F ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A --> B /\ C e. A ) -> ( F ` C ) e. ran F ) |
| 4 | frn | |- ( F : A --> B -> ran F C_ B ) |
|
| 5 | 4 | sseld | |- ( F : A --> B -> ( ( F ` C ) e. ran F -> ( F ` C ) e. B ) ) |
| 6 | 5 | adantr | |- ( ( F : A --> B /\ C e. A ) -> ( ( F ` C ) e. ran F -> ( F ` C ) e. B ) ) |
| 7 | 3 6 | mpd | |- ( ( F : A --> B /\ C e. A ) -> ( F ` C ) e. B ) |