| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdm |  |-  ( ( F |` A ) : A --> B -> dom ( F |` A ) = A ) | 
						
							| 2 |  | dmres |  |-  dom ( F |` A ) = ( A i^i dom F ) | 
						
							| 3 |  | inss2 |  |-  ( A i^i dom F ) C_ dom F | 
						
							| 4 | 2 3 | eqsstri |  |-  dom ( F |` A ) C_ dom F | 
						
							| 5 | 1 4 | eqsstrrdi |  |-  ( ( F |` A ) : A --> B -> A C_ dom F ) | 
						
							| 6 | 5 | sselda |  |-  ( ( ( F |` A ) : A --> B /\ x e. A ) -> x e. dom F ) | 
						
							| 7 |  | fvres |  |-  ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) | 
						
							| 9 |  | ffvelcdm |  |-  ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) e. B ) | 
						
							| 10 | 8 9 | eqeltrrd |  |-  ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 11 | 6 10 | jca |  |-  ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( x e. dom F /\ ( F ` x ) e. B ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( F |` A ) : A --> B -> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) | 
						
							| 13 |  | simpl |  |-  ( ( x e. dom F /\ ( F ` x ) e. B ) -> x e. dom F ) | 
						
							| 14 | 13 | ralimi |  |-  ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A x e. dom F ) | 
						
							| 15 |  | dfss3 |  |-  ( A C_ dom F <-> A. x e. A x e. dom F ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A C_ dom F ) | 
						
							| 17 |  | funfn |  |-  ( Fun F <-> F Fn dom F ) | 
						
							| 18 |  | fnssres |  |-  ( ( F Fn dom F /\ A C_ dom F ) -> ( F |` A ) Fn A ) | 
						
							| 19 | 17 18 | sylanb |  |-  ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) Fn A ) | 
						
							| 20 | 16 19 | sylan2 |  |-  ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) Fn A ) | 
						
							| 21 |  | simpr |  |-  ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( F ` x ) e. B ) | 
						
							| 22 | 7 | eleq1d |  |-  ( x e. A -> ( ( ( F |` A ) ` x ) e. B <-> ( F ` x ) e. B ) ) | 
						
							| 23 | 21 22 | imbitrrid |  |-  ( x e. A -> ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( ( F |` A ) ` x ) e. B ) ) | 
						
							| 24 | 23 | ralimia |  |-  ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) | 
						
							| 25 | 24 | adantl |  |-  ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) | 
						
							| 26 |  | fnfvrnss |  |-  ( ( ( F |` A ) Fn A /\ A. x e. A ( ( F |` A ) ` x ) e. B ) -> ran ( F |` A ) C_ B ) | 
						
							| 27 | 20 25 26 | syl2anc |  |-  ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ran ( F |` A ) C_ B ) | 
						
							| 28 |  | df-f |  |-  ( ( F |` A ) : A --> B <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) C_ B ) ) | 
						
							| 29 | 20 27 28 | sylanbrc |  |-  ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) : A --> B ) | 
						
							| 30 | 29 | ex |  |-  ( Fun F -> ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> ( F |` A ) : A --> B ) ) | 
						
							| 31 | 12 30 | impbid2 |  |-  ( Fun F -> ( ( F |` A ) : A --> B <-> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) |