Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
|- ( ( F |` A ) : A --> B -> dom ( F |` A ) = A ) |
2 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
3 |
|
inss2 |
|- ( A i^i dom F ) C_ dom F |
4 |
2 3
|
eqsstri |
|- dom ( F |` A ) C_ dom F |
5 |
1 4
|
eqsstrrdi |
|- ( ( F |` A ) : A --> B -> A C_ dom F ) |
6 |
5
|
sselda |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> x e. dom F ) |
7 |
|
fvres |
|- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
8 |
7
|
adantl |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
9 |
|
ffvelrn |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) e. B ) |
10 |
8 9
|
eqeltrrd |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
11 |
6 10
|
jca |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( x e. dom F /\ ( F ` x ) e. B ) ) |
12 |
11
|
ralrimiva |
|- ( ( F |` A ) : A --> B -> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) |
13 |
|
simpl |
|- ( ( x e. dom F /\ ( F ` x ) e. B ) -> x e. dom F ) |
14 |
13
|
ralimi |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A x e. dom F ) |
15 |
|
dfss3 |
|- ( A C_ dom F <-> A. x e. A x e. dom F ) |
16 |
14 15
|
sylibr |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A C_ dom F ) |
17 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
18 |
|
fnssres |
|- ( ( F Fn dom F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
19 |
17 18
|
sylanb |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
20 |
16 19
|
sylan2 |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) Fn A ) |
21 |
|
simpr |
|- ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( F ` x ) e. B ) |
22 |
7
|
eleq1d |
|- ( x e. A -> ( ( ( F |` A ) ` x ) e. B <-> ( F ` x ) e. B ) ) |
23 |
21 22
|
syl5ibr |
|- ( x e. A -> ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( ( F |` A ) ` x ) e. B ) ) |
24 |
23
|
ralimia |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
25 |
24
|
adantl |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
26 |
|
fnfvrnss |
|- ( ( ( F |` A ) Fn A /\ A. x e. A ( ( F |` A ) ` x ) e. B ) -> ran ( F |` A ) C_ B ) |
27 |
20 25 26
|
syl2anc |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ran ( F |` A ) C_ B ) |
28 |
|
df-f |
|- ( ( F |` A ) : A --> B <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) C_ B ) ) |
29 |
20 27 28
|
sylanbrc |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) : A --> B ) |
30 |
29
|
ex |
|- ( Fun F -> ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> ( F |` A ) : A --> B ) ) |
31 |
12 30
|
impbid2 |
|- ( Fun F -> ( ( F |` A ) : A --> B <-> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) |