Step |
Hyp |
Ref |
Expression |
1 |
|
fzval3 |
|- ( L e. ZZ -> ( 0 ... L ) = ( 0 ..^ ( L + 1 ) ) ) |
2 |
1
|
feq2d |
|- ( L e. ZZ -> ( W : ( 0 ... L ) --> S <-> W : ( 0 ..^ ( L + 1 ) ) --> S ) ) |
3 |
|
iswrdi |
|- ( W : ( 0 ..^ ( L + 1 ) ) --> S -> W e. Word S ) |
4 |
2 3
|
syl6bi |
|- ( L e. ZZ -> ( W : ( 0 ... L ) --> S -> W e. Word S ) ) |
5 |
|
fzn0 |
|- ( ( 0 ... L ) =/= (/) <-> L e. ( ZZ>= ` 0 ) ) |
6 |
|
elnn0uz |
|- ( L e. NN0 <-> L e. ( ZZ>= ` 0 ) ) |
7 |
5 6
|
sylbb2 |
|- ( ( 0 ... L ) =/= (/) -> L e. NN0 ) |
8 |
7
|
nn0zd |
|- ( ( 0 ... L ) =/= (/) -> L e. ZZ ) |
9 |
8
|
necon1bi |
|- ( -. L e. ZZ -> ( 0 ... L ) = (/) ) |
10 |
9
|
feq2d |
|- ( -. L e. ZZ -> ( W : ( 0 ... L ) --> S <-> W : (/) --> S ) ) |
11 |
|
iswrddm0 |
|- ( W : (/) --> S -> W e. Word S ) |
12 |
10 11
|
syl6bi |
|- ( -. L e. ZZ -> ( W : ( 0 ... L ) --> S -> W e. Word S ) ) |
13 |
4 12
|
pm2.61i |
|- ( W : ( 0 ... L ) --> S -> W e. Word S ) |