Step |
Hyp |
Ref |
Expression |
1 |
|
funfvop |
|- ( ( Fun F /\ X e. dom F ) -> <. X , ( F ` X ) >. e. F ) |
2 |
|
simplll |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> Fun F ) |
3 |
|
funrel |
|- ( Fun F -> Rel F ) |
4 |
2 3
|
syl |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> Rel F ) |
5 |
|
simplr |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> p e. F ) |
6 |
|
1st2nd |
|- ( ( Rel F /\ p e. F ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
8 |
|
simpr |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> X = ( 1st ` p ) ) |
9 |
|
simpllr |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> X e. dom F ) |
10 |
8
|
opeq1d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> <. X , ( 2nd ` p ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
11 |
7 10
|
eqtr4d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> p = <. X , ( 2nd ` p ) >. ) |
12 |
11 5
|
eqeltrrd |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> <. X , ( 2nd ` p ) >. e. F ) |
13 |
|
funopfvb |
|- ( ( Fun F /\ X e. dom F ) -> ( ( F ` X ) = ( 2nd ` p ) <-> <. X , ( 2nd ` p ) >. e. F ) ) |
14 |
13
|
biimpar |
|- ( ( ( Fun F /\ X e. dom F ) /\ <. X , ( 2nd ` p ) >. e. F ) -> ( F ` X ) = ( 2nd ` p ) ) |
15 |
2 9 12 14
|
syl21anc |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> ( F ` X ) = ( 2nd ` p ) ) |
16 |
8 15
|
opeq12d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> <. X , ( F ` X ) >. = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
17 |
7 16
|
eqtr4d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ X = ( 1st ` p ) ) -> p = <. X , ( F ` X ) >. ) |
18 |
|
simpr |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ p = <. X , ( F ` X ) >. ) -> p = <. X , ( F ` X ) >. ) |
19 |
18
|
fveq2d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ p = <. X , ( F ` X ) >. ) -> ( 1st ` p ) = ( 1st ` <. X , ( F ` X ) >. ) ) |
20 |
|
fvex |
|- ( F ` X ) e. _V |
21 |
|
op1stg |
|- ( ( X e. dom F /\ ( F ` X ) e. _V ) -> ( 1st ` <. X , ( F ` X ) >. ) = X ) |
22 |
20 21
|
mpan2 |
|- ( X e. dom F -> ( 1st ` <. X , ( F ` X ) >. ) = X ) |
23 |
22
|
ad3antlr |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ p = <. X , ( F ` X ) >. ) -> ( 1st ` <. X , ( F ` X ) >. ) = X ) |
24 |
19 23
|
eqtr2d |
|- ( ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) /\ p = <. X , ( F ` X ) >. ) -> X = ( 1st ` p ) ) |
25 |
17 24
|
impbida |
|- ( ( ( Fun F /\ X e. dom F ) /\ p e. F ) -> ( X = ( 1st ` p ) <-> p = <. X , ( F ` X ) >. ) ) |
26 |
25
|
ralrimiva |
|- ( ( Fun F /\ X e. dom F ) -> A. p e. F ( X = ( 1st ` p ) <-> p = <. X , ( F ` X ) >. ) ) |
27 |
|
eqeq2 |
|- ( q = <. X , ( F ` X ) >. -> ( p = q <-> p = <. X , ( F ` X ) >. ) ) |
28 |
27
|
bibi2d |
|- ( q = <. X , ( F ` X ) >. -> ( ( X = ( 1st ` p ) <-> p = q ) <-> ( X = ( 1st ` p ) <-> p = <. X , ( F ` X ) >. ) ) ) |
29 |
28
|
ralbidv |
|- ( q = <. X , ( F ` X ) >. -> ( A. p e. F ( X = ( 1st ` p ) <-> p = q ) <-> A. p e. F ( X = ( 1st ` p ) <-> p = <. X , ( F ` X ) >. ) ) ) |
30 |
29
|
rspcev |
|- ( ( <. X , ( F ` X ) >. e. F /\ A. p e. F ( X = ( 1st ` p ) <-> p = <. X , ( F ` X ) >. ) ) -> E. q e. F A. p e. F ( X = ( 1st ` p ) <-> p = q ) ) |
31 |
1 26 30
|
syl2anc |
|- ( ( Fun F /\ X e. dom F ) -> E. q e. F A. p e. F ( X = ( 1st ` p ) <-> p = q ) ) |
32 |
|
reu6 |
|- ( E! p e. F X = ( 1st ` p ) <-> E. q e. F A. p e. F ( X = ( 1st ` p ) <-> p = q ) ) |
33 |
31 32
|
sylibr |
|- ( ( Fun F /\ X e. dom F ) -> E! p e. F X = ( 1st ` p ) ) |