Step |
Hyp |
Ref |
Expression |
1 |
|
df-fg |
|- filGen = ( v e. _V , f e. ( fBas ` v ) |-> { x e. ~P v | ( f i^i ~P x ) =/= (/) } ) |
2 |
1
|
a1i |
|- ( F e. ( fBas ` X ) -> filGen = ( v e. _V , f e. ( fBas ` v ) |-> { x e. ~P v | ( f i^i ~P x ) =/= (/) } ) ) |
3 |
|
pweq |
|- ( v = X -> ~P v = ~P X ) |
4 |
3
|
adantr |
|- ( ( v = X /\ f = F ) -> ~P v = ~P X ) |
5 |
|
ineq1 |
|- ( f = F -> ( f i^i ~P x ) = ( F i^i ~P x ) ) |
6 |
5
|
neeq1d |
|- ( f = F -> ( ( f i^i ~P x ) =/= (/) <-> ( F i^i ~P x ) =/= (/) ) ) |
7 |
6
|
adantl |
|- ( ( v = X /\ f = F ) -> ( ( f i^i ~P x ) =/= (/) <-> ( F i^i ~P x ) =/= (/) ) ) |
8 |
4 7
|
rabeqbidv |
|- ( ( v = X /\ f = F ) -> { x e. ~P v | ( f i^i ~P x ) =/= (/) } = { x e. ~P X | ( F i^i ~P x ) =/= (/) } ) |
9 |
8
|
adantl |
|- ( ( F e. ( fBas ` X ) /\ ( v = X /\ f = F ) ) -> { x e. ~P v | ( f i^i ~P x ) =/= (/) } = { x e. ~P X | ( F i^i ~P x ) =/= (/) } ) |
10 |
|
fveq2 |
|- ( v = X -> ( fBas ` v ) = ( fBas ` X ) ) |
11 |
10
|
adantl |
|- ( ( F e. ( fBas ` X ) /\ v = X ) -> ( fBas ` v ) = ( fBas ` X ) ) |
12 |
|
elfvex |
|- ( F e. ( fBas ` X ) -> X e. _V ) |
13 |
|
id |
|- ( F e. ( fBas ` X ) -> F e. ( fBas ` X ) ) |
14 |
|
elfvdm |
|- ( F e. ( fBas ` X ) -> X e. dom fBas ) |
15 |
|
pwexg |
|- ( X e. dom fBas -> ~P X e. _V ) |
16 |
|
rabexg |
|- ( ~P X e. _V -> { x e. ~P X | ( F i^i ~P x ) =/= (/) } e. _V ) |
17 |
14 15 16
|
3syl |
|- ( F e. ( fBas ` X ) -> { x e. ~P X | ( F i^i ~P x ) =/= (/) } e. _V ) |
18 |
2 9 11 12 13 17
|
ovmpodx |
|- ( F e. ( fBas ` X ) -> ( X filGen F ) = { x e. ~P X | ( F i^i ~P x ) =/= (/) } ) |