| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chincl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A i^i B ) e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chincl | 
							 |-  ( ( A e. CH /\ C e. CH ) -> ( A i^i C ) e. CH )  | 
						
						
							| 3 | 
							
								
							 | 
							chjcl | 
							 |-  ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH )  | 
						
						
							| 5 | 
							
								4
							 | 
							anandis | 
							 |-  ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) e. CH )  | 
						
						
							| 6 | 
							
								
							 | 
							chjcl | 
							 |-  ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH )  | 
						
						
							| 7 | 
							
								
							 | 
							chincl | 
							 |-  ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. CH )  | 
						
						
							| 9 | 
							
								
							 | 
							chsh | 
							 |-  ( ( A i^i ( B vH C ) ) e. CH -> ( A i^i ( B vH C ) ) e. SH )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( A i^i ( B vH C ) ) e. SH )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							jca | 
							 |-  ( ( A e. CH /\ ( B e. CH /\ C e. CH ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impb | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ledi | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							chdmj1 | 
							 |-  ( ( ( A i^i B ) e. CH /\ ( A i^i C ) e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 17 | 
							
								1 2 16
							 | 
							syl2an | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							chdmm1 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ineq1d | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i ( _|_ ` ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							eqtrd | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ ( A e. CH /\ C e. CH ) ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3impdi | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ineq2d | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							in4 | 
							 |-  ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							cmcm2 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> A C_H ( _|_ ` B ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							cmcm | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H B <-> B C_H A ) )  | 
						
						
							| 28 | 
							
								
							 | 
							choccl | 
							 |-  ( B e. CH -> ( _|_ ` B ) e. CH )  | 
						
						
							| 29 | 
							
								
							 | 
							cmbr3 | 
							 |-  ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_H ( _|_ ` B ) <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 31 | 
							
								26 27 30
							 | 
							3bitr3d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( B C_H A <-> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							biimpa | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i ( _|_ ` B ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							incom | 
							 |-  ( A i^i ( _|_ ` B ) ) = ( ( _|_ ` B ) i^i A )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eqtrdi | 
							 |-  ( ( ( A e. CH /\ B e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3adantl3 | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ B C_H A ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantrr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( _|_ ` B ) i^i A ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ineq1d | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 38 | 
							
								25 37
							 | 
							eqtrid | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 39 | 
							
								24 38
							 | 
							eqtrd | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							in4 | 
							 |-  ( ( ( _|_ ` B ) i^i A ) i^i ( ( B vH C ) i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							eqtrdi | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							ococ | 
							 |-  ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							 |-  ( B e. CH -> ( ( _|_ ` ( _|_ ` B ) ) vH C ) = ( B vH C ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ineq2d | 
							 |-  ( B e. CH -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							3ad2ant2 | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i ( B vH C ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							cmcm3 | 
							 |-  ( ( B e. CH /\ C e. CH ) -> ( B C_H C <-> ( _|_ ` B ) C_H C ) )  | 
						
						
							| 48 | 
							
								
							 | 
							cmbr3 | 
							 |-  ( ( ( _|_ ` B ) e. CH /\ C e. CH ) -> ( ( _|_ ` B ) C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) )  | 
						
						
							| 49 | 
							
								28 48
							 | 
							sylan | 
							 |-  ( ( B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							bitrd | 
							 |-  ( ( B e. CH /\ C e. CH ) -> ( B C_H C <-> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							biimpa | 
							 |-  ( ( ( B e. CH /\ C e. CH ) /\ B C_H C ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							3adantl1 | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ B C_H C ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantrl | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( ( _|_ ` ( _|_ ` B ) ) vH C ) ) = ( ( _|_ ` B ) i^i C ) )  | 
						
						
							| 54 | 
							
								46 53
							 | 
							eqtr3d | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( _|_ ` B ) i^i ( B vH C ) ) = ( ( _|_ ` B ) i^i C ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							ineq1d | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							inass | 
							 |-  ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							in12 | 
							 |-  ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( A i^i ( C i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							inass | 
							 |-  ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = ( A i^i ( C i^i ( _|_ ` ( A i^i C ) ) ) )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							eqtr4i | 
							 |-  ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							chocin | 
							 |-  ( ( A i^i C ) e. CH -> ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = 0H )  | 
						
						
							| 61 | 
							
								2 60
							 | 
							syl | 
							 |-  ( ( A e. CH /\ C e. CH ) -> ( ( A i^i C ) i^i ( _|_ ` ( A i^i C ) ) ) = 0H )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							eqtrid | 
							 |-  ( ( A e. CH /\ C e. CH ) -> ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H )  | 
						
						
							| 63 | 
							
								62
							 | 
							ineq2d | 
							 |-  ( ( A e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i ( C i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							eqtrid | 
							 |-  ( ( A e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							3adant2 | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = ( ( _|_ ` B ) i^i 0H ) )  | 
						
						
							| 66 | 
							
								
							 | 
							chm0 | 
							 |-  ( ( _|_ ` B ) e. CH -> ( ( _|_ ` B ) i^i 0H ) = 0H )  | 
						
						
							| 67 | 
							
								28 66
							 | 
							syl | 
							 |-  ( B e. CH -> ( ( _|_ ` B ) i^i 0H ) = 0H )  | 
						
						
							| 68 | 
							
								67
							 | 
							3ad2ant2 | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( _|_ ` B ) i^i 0H ) = 0H )  | 
						
						
							| 69 | 
							
								65 68
							 | 
							eqtrd | 
							 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i C ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H )  | 
						
						
							| 71 | 
							
								55 70
							 | 
							eqtrd | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( ( _|_ ` B ) i^i ( B vH C ) ) i^i ( A i^i ( _|_ ` ( A i^i C ) ) ) ) = 0H )  | 
						
						
							| 72 | 
							
								41 71
							 | 
							eqtrd | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H )  | 
						
						
							| 73 | 
							
								
							 | 
							pjoml | 
							 |-  ( ( ( ( ( A i^i B ) vH ( A i^i C ) ) e. CH /\ ( A i^i ( B vH C ) ) e. SH ) /\ ( ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) /\ ( ( A i^i ( B vH C ) ) i^i ( _|_ ` ( ( A i^i B ) vH ( A i^i C ) ) ) ) = 0H ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) )  | 
						
						
							| 74 | 
							
								13 15 72 73
							 | 
							syl12anc | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( A i^i ( B vH C ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							eqcomd | 
							 |-  ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( B C_H A /\ B C_H C ) ) -> ( A i^i ( B vH C ) ) = ( ( A i^i B ) vH ( A i^i C ) ) )  |