Step |
Hyp |
Ref |
Expression |
1 |
|
fh1.1 |
|- A e. CH |
2 |
|
fh1.2 |
|- B e. CH |
3 |
|
fh1.3 |
|- C e. CH |
4 |
|
fh1.4 |
|- A C_H B |
5 |
|
fh1.5 |
|- A C_H C |
6 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
8 |
3
|
choccli |
|- ( _|_ ` C ) e. CH |
9 |
1 2 4
|
cmcm3ii |
|- ( _|_ ` A ) C_H B |
10 |
6 2 9
|
cmcm2ii |
|- ( _|_ ` A ) C_H ( _|_ ` B ) |
11 |
1 3 5
|
cmcm3ii |
|- ( _|_ ` A ) C_H C |
12 |
6 3 11
|
cmcm2ii |
|- ( _|_ ` A ) C_H ( _|_ ` C ) |
13 |
6 7 8 10 12
|
fh1i |
|- ( ( _|_ ` A ) i^i ( ( _|_ ` B ) vH ( _|_ ` C ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` C ) ) ) |
14 |
2 3
|
chdmm1i |
|- ( _|_ ` ( B i^i C ) ) = ( ( _|_ ` B ) vH ( _|_ ` C ) ) |
15 |
14
|
ineq2i |
|- ( ( _|_ ` A ) i^i ( _|_ ` ( B i^i C ) ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) vH ( _|_ ` C ) ) ) |
16 |
1 2
|
chdmj1i |
|- ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) |
17 |
1 3
|
chdmj1i |
|- ( _|_ ` ( A vH C ) ) = ( ( _|_ ` A ) i^i ( _|_ ` C ) ) |
18 |
16 17
|
oveq12i |
|- ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH C ) ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) vH ( ( _|_ ` A ) i^i ( _|_ ` C ) ) ) |
19 |
13 15 18
|
3eqtr4ri |
|- ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH C ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( B i^i C ) ) ) |
20 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
21 |
1 3
|
chjcli |
|- ( A vH C ) e. CH |
22 |
20 21
|
chdmm1i |
|- ( _|_ ` ( ( A vH B ) i^i ( A vH C ) ) ) = ( ( _|_ ` ( A vH B ) ) vH ( _|_ ` ( A vH C ) ) ) |
23 |
2 3
|
chincli |
|- ( B i^i C ) e. CH |
24 |
1 23
|
chdmj1i |
|- ( _|_ ` ( A vH ( B i^i C ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( B i^i C ) ) ) |
25 |
19 22 24
|
3eqtr4i |
|- ( _|_ ` ( ( A vH B ) i^i ( A vH C ) ) ) = ( _|_ ` ( A vH ( B i^i C ) ) ) |
26 |
1 23
|
chjcli |
|- ( A vH ( B i^i C ) ) e. CH |
27 |
20 21
|
chincli |
|- ( ( A vH B ) i^i ( A vH C ) ) e. CH |
28 |
26 27
|
chcon3i |
|- ( ( A vH ( B i^i C ) ) = ( ( A vH B ) i^i ( A vH C ) ) <-> ( _|_ ` ( ( A vH B ) i^i ( A vH C ) ) ) = ( _|_ ` ( A vH ( B i^i C ) ) ) ) |
29 |
25 28
|
mpbir |
|- ( A vH ( B i^i C ) ) = ( ( A vH B ) i^i ( A vH C ) ) |