| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
| 2 |
|
carden |
|- ( ( A e. V /\ x e. _om ) -> ( ( card ` A ) = ( card ` x ) <-> A ~~ x ) ) |
| 3 |
|
cardnn |
|- ( x e. _om -> ( card ` x ) = x ) |
| 4 |
|
eqtr |
|- ( ( ( card ` A ) = ( card ` x ) /\ ( card ` x ) = x ) -> ( card ` A ) = x ) |
| 5 |
4
|
expcom |
|- ( ( card ` x ) = x -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) = x ) ) |
| 6 |
3 5
|
syl |
|- ( x e. _om -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) = x ) ) |
| 7 |
|
eleq1a |
|- ( x e. _om -> ( ( card ` A ) = x -> ( card ` A ) e. _om ) ) |
| 8 |
6 7
|
syld |
|- ( x e. _om -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) e. _om ) ) |
| 9 |
8
|
adantl |
|- ( ( A e. V /\ x e. _om ) -> ( ( card ` A ) = ( card ` x ) -> ( card ` A ) e. _om ) ) |
| 10 |
2 9
|
sylbird |
|- ( ( A e. V /\ x e. _om ) -> ( A ~~ x -> ( card ` A ) e. _om ) ) |
| 11 |
10
|
rexlimdva |
|- ( A e. V -> ( E. x e. _om A ~~ x -> ( card ` A ) e. _om ) ) |
| 12 |
1 11
|
biimtrid |
|- ( A e. V -> ( A e. Fin -> ( card ` A ) e. _om ) ) |
| 13 |
|
cardnn |
|- ( ( card ` A ) e. _om -> ( card ` ( card ` A ) ) = ( card ` A ) ) |
| 14 |
13
|
eqcomd |
|- ( ( card ` A ) e. _om -> ( card ` A ) = ( card ` ( card ` A ) ) ) |
| 15 |
14
|
adantl |
|- ( ( A e. V /\ ( card ` A ) e. _om ) -> ( card ` A ) = ( card ` ( card ` A ) ) ) |
| 16 |
|
carden |
|- ( ( A e. V /\ ( card ` A ) e. _om ) -> ( ( card ` A ) = ( card ` ( card ` A ) ) <-> A ~~ ( card ` A ) ) ) |
| 17 |
15 16
|
mpbid |
|- ( ( A e. V /\ ( card ` A ) e. _om ) -> A ~~ ( card ` A ) ) |
| 18 |
17
|
ex |
|- ( A e. V -> ( ( card ` A ) e. _om -> A ~~ ( card ` A ) ) ) |
| 19 |
18
|
ancld |
|- ( A e. V -> ( ( card ` A ) e. _om -> ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) ) ) |
| 20 |
|
breq2 |
|- ( x = ( card ` A ) -> ( A ~~ x <-> A ~~ ( card ` A ) ) ) |
| 21 |
20
|
rspcev |
|- ( ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) -> E. x e. _om A ~~ x ) |
| 22 |
21 1
|
sylibr |
|- ( ( ( card ` A ) e. _om /\ A ~~ ( card ` A ) ) -> A e. Fin ) |
| 23 |
19 22
|
syl6 |
|- ( A e. V -> ( ( card ` A ) e. _om -> A e. Fin ) ) |
| 24 |
12 23
|
impbid |
|- ( A e. V -> ( A e. Fin <-> ( card ` A ) e. _om ) ) |