Step |
Hyp |
Ref |
Expression |
1 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
2 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
3 |
|
nnadju |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
4 |
|
df-dju |
|- ( ( card ` A ) |_| ( card ` B ) ) = ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) |
5 |
|
snfi |
|- { (/) } e. Fin |
6 |
|
nnfi |
|- ( ( card ` A ) e. _om -> ( card ` A ) e. Fin ) |
7 |
|
xpfi |
|- ( ( { (/) } e. Fin /\ ( card ` A ) e. Fin ) -> ( { (/) } X. ( card ` A ) ) e. Fin ) |
8 |
5 6 7
|
sylancr |
|- ( ( card ` A ) e. _om -> ( { (/) } X. ( card ` A ) ) e. Fin ) |
9 |
|
snfi |
|- { 1o } e. Fin |
10 |
|
nnfi |
|- ( ( card ` B ) e. _om -> ( card ` B ) e. Fin ) |
11 |
|
xpfi |
|- ( ( { 1o } e. Fin /\ ( card ` B ) e. Fin ) -> ( { 1o } X. ( card ` B ) ) e. Fin ) |
12 |
9 10 11
|
sylancr |
|- ( ( card ` B ) e. _om -> ( { 1o } X. ( card ` B ) ) e. Fin ) |
13 |
|
unfi |
|- ( ( ( { (/) } X. ( card ` A ) ) e. Fin /\ ( { 1o } X. ( card ` B ) ) e. Fin ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) |
14 |
8 12 13
|
syl2an |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( { (/) } X. ( card ` A ) ) u. ( { 1o } X. ( card ` B ) ) ) e. Fin ) |
15 |
4 14
|
eqeltrid |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) |_| ( card ` B ) ) e. Fin ) |
16 |
|
ficardid |
|- ( ( ( card ` A ) |_| ( card ` B ) ) e. Fin -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
17 |
15 16
|
syl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) |_| ( card ` B ) ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
18 |
3 17
|
eqbrtrrd |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
19 |
1 2 18
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) ) |
20 |
|
ficardid |
|- ( A e. Fin -> ( card ` A ) ~~ A ) |
21 |
|
ficardid |
|- ( B e. Fin -> ( card ` B ) ~~ B ) |
22 |
|
djuen |
|- ( ( ( card ` A ) ~~ A /\ ( card ` B ) ~~ B ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) |
23 |
20 21 22
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) |
24 |
|
entr |
|- ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( ( card ` A ) |_| ( card ` B ) ) /\ ( ( card ` A ) |_| ( card ` B ) ) ~~ ( A |_| B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
25 |
19 23 24
|
syl2anc |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
26 |
25
|
ensymd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |