Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
2 |
1
|
biimpi |
|- ( A e. Fin -> E. x e. _om A ~~ x ) |
3 |
|
finnum |
|- ( A e. Fin -> A e. dom card ) |
4 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
5 |
3 4
|
syl |
|- ( A e. Fin -> ( card ` A ) ~~ A ) |
6 |
|
entr |
|- ( ( ( card ` A ) ~~ A /\ A ~~ x ) -> ( card ` A ) ~~ x ) |
7 |
5 6
|
sylan |
|- ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) ~~ x ) |
8 |
|
cardon |
|- ( card ` A ) e. On |
9 |
|
onomeneq |
|- ( ( ( card ` A ) e. On /\ x e. _om ) -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) ) |
10 |
8 9
|
mpan |
|- ( x e. _om -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) ) |
11 |
7 10
|
syl5ib |
|- ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) = x ) ) |
12 |
|
eleq1a |
|- ( x e. _om -> ( ( card ` A ) = x -> ( card ` A ) e. _om ) ) |
13 |
11 12
|
syld |
|- ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) e. _om ) ) |
14 |
13
|
expcomd |
|- ( x e. _om -> ( A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) ) ) |
15 |
14
|
rexlimiv |
|- ( E. x e. _om A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) ) |
16 |
2 15
|
mpcom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |