Step |
Hyp |
Ref |
Expression |
1 |
|
ficardadju |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
3 |
2
|
ensymd |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
4 |
|
endjudisj |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
5 |
|
entr |
|- ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) /\ ( A |_| B ) ~~ ( A u. B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
7 |
|
carden2b |
|- ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
8 |
6 7
|
syl |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
9 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
10 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
11 |
|
nnacl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
12 |
|
cardnn |
|- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
13 |
11 12
|
syl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
14 |
9 10 13
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
15 |
14
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
16 |
8 15
|
eqtr3d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |