| Step |
Hyp |
Ref |
Expression |
| 1 |
|
undjudom |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
| 2 |
|
ficardadju |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
| 3 |
|
domentr |
|- ( ( ( A u. B ) ~<_ ( A |_| B ) /\ ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) |
| 5 |
|
unfi |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
| 6 |
|
finnum |
|- ( ( A u. B ) e. Fin -> ( A u. B ) e. dom card ) |
| 7 |
5 6
|
syl |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. dom card ) |
| 8 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
| 9 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
| 10 |
|
nnacl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
| 11 |
8 9 10
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
| 12 |
|
nnon |
|- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( ( card ` A ) +o ( card ` B ) ) e. On ) |
| 13 |
|
onenon |
|- ( ( ( card ` A ) +o ( card ` B ) ) e. On -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) |
| 14 |
11 12 13
|
3syl |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) +o ( card ` B ) ) e. dom card ) |
| 15 |
|
carddom2 |
|- ( ( ( A u. B ) e. dom card /\ ( ( card ` A ) +o ( card ` B ) ) e. dom card ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) |
| 16 |
7 14 15
|
syl2anc |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) <-> ( A u. B ) ~<_ ( ( card ` A ) +o ( card ` B ) ) ) ) |
| 17 |
4 16
|
mpbird |
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( card ` ( ( card ` A ) +o ( card ` B ) ) ) ) |
| 18 |
|
cardnn |
|- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 19 |
11 18
|
syl |
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
| 20 |
17 19
|
sseqtrd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( A u. B ) ) C_ ( ( card ` A ) +o ( card ` B ) ) ) |