Step |
Hyp |
Ref |
Expression |
1 |
|
finnum |
|- ( A e. Fin -> A e. dom card ) |
2 |
|
finnum |
|- ( B e. Fin -> B e. dom card ) |
3 |
|
cardadju |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( ( card ` A ) +o ( card ` B ) ) ) |
6 |
5
|
ensymd |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) ) |
7 |
|
endjudisj |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
8 |
|
entr |
|- ( ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A |_| B ) /\ ( A |_| B ) ~~ ( A u. B ) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) ) |
10 |
|
carden2b |
|- ( ( ( card ` A ) +o ( card ` B ) ) ~~ ( A u. B ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
11 |
9 10
|
syl |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( card ` ( A u. B ) ) ) |
12 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
13 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
14 |
|
nnacl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( card ` A ) +o ( card ` B ) ) e. _om ) |
15 |
|
cardnn |
|- ( ( ( card ` A ) +o ( card ` B ) ) e. _om -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
16 |
14 15
|
syl |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
17 |
12 13 16
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
18 |
17
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
19 |
11 18
|
eqtr3d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |