| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi |  |-  ( A ~<_ _om -> E. f f : A -1-1-> _om ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. B /\ A ~<_ _om ) -> E. f f : A -1-1-> _om ) | 
						
							| 3 |  | reldom |  |-  Rel ~<_ | 
						
							| 4 | 3 | brrelex2i |  |-  ( A ~<_ _om -> _om e. _V ) | 
						
							| 5 |  | omelon2 |  |-  ( _om e. _V -> _om e. On ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> _om e. On ) | 
						
							| 7 |  | pwexg |  |-  ( A e. B -> ~P A e. _V ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P A e. _V ) | 
						
							| 9 |  | inex1g |  |-  ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) e. _V ) | 
						
							| 11 |  | difss |  |-  ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) | 
						
							| 12 |  | ssdomg |  |-  ( ( ~P A i^i Fin ) e. _V -> ( ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) ) | 
						
							| 13 | 10 11 12 | mpisyl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) | 
						
							| 14 |  | f1f1orn |  |-  ( f : A -1-1-> _om -> f : A -1-1-onto-> ran f ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> f : A -1-1-onto-> ran f ) | 
						
							| 16 |  | f1opwfi |  |-  ( f : A -1-1-onto-> ran f -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) | 
						
							| 18 |  | f1oeng |  |-  ( ( ( ~P A i^i Fin ) e. _V /\ ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) | 
						
							| 19 | 10 17 18 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) | 
						
							| 20 |  | pwexg |  |-  ( _om e. _V -> ~P _om e. _V ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P _om e. _V ) | 
						
							| 22 |  | inex1g |  |-  ( ~P _om e. _V -> ( ~P _om i^i Fin ) e. _V ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) e. _V ) | 
						
							| 24 |  | f1f |  |-  ( f : A -1-1-> _om -> f : A --> _om ) | 
						
							| 25 | 24 | frnd |  |-  ( f : A -1-1-> _om -> ran f C_ _om ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ran f C_ _om ) | 
						
							| 27 | 26 | sspwd |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P ran f C_ ~P _om ) | 
						
							| 28 | 27 | ssrind |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) ) | 
						
							| 29 |  | ssdomg |  |-  ( ( ~P _om i^i Fin ) e. _V -> ( ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) ) | 
						
							| 30 | 23 28 29 | sylc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) | 
						
							| 31 |  | sneq |  |-  ( f = z -> { f } = { z } ) | 
						
							| 32 |  | pweq |  |-  ( f = z -> ~P f = ~P z ) | 
						
							| 33 | 31 32 | xpeq12d |  |-  ( f = z -> ( { f } X. ~P f ) = ( { z } X. ~P z ) ) | 
						
							| 34 | 33 | cbviunv |  |-  U_ f e. x ( { f } X. ~P f ) = U_ z e. x ( { z } X. ~P z ) | 
						
							| 35 |  | iuneq1 |  |-  ( x = y -> U_ z e. x ( { z } X. ~P z ) = U_ z e. y ( { z } X. ~P z ) ) | 
						
							| 36 | 34 35 | eqtrid |  |-  ( x = y -> U_ f e. x ( { f } X. ~P f ) = U_ z e. y ( { z } X. ~P z ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( x = y -> ( card ` U_ f e. x ( { f } X. ~P f ) ) = ( card ` U_ z e. y ( { z } X. ~P z ) ) ) | 
						
							| 38 | 37 | cbvmptv |  |-  ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) = ( y e. ( ~P _om i^i Fin ) |-> ( card ` U_ z e. y ( { z } X. ~P z ) ) ) | 
						
							| 39 | 38 | ackbij1 |  |-  ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om | 
						
							| 40 |  | f1oeng |  |-  ( ( ( ~P _om i^i Fin ) e. _V /\ ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) | 
						
							| 41 | 23 39 40 | sylancl |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) | 
						
							| 42 |  | domentr |  |-  ( ( ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) /\ ( ~P _om i^i Fin ) ~~ _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) | 
						
							| 43 | 30 41 42 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) | 
						
							| 44 |  | endomtr |  |-  ( ( ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) /\ ( ~P ran f i^i Fin ) ~<_ _om ) -> ( ~P A i^i Fin ) ~<_ _om ) | 
						
							| 45 | 19 43 44 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~<_ _om ) | 
						
							| 46 |  | domtr |  |-  ( ( ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) | 
						
							| 47 | 13 45 46 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) | 
						
							| 48 |  | ondomen |  |-  ( ( _om e. On /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) | 
						
							| 49 | 6 47 48 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) | 
						
							| 50 |  | eqid |  |-  ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) = ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) | 
						
							| 51 | 50 | fifo |  |-  ( A e. B -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) | 
						
							| 52 | 51 | ad2antrr |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) | 
						
							| 53 |  | fodomnum |  |-  ( ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card -> ( ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) ) | 
						
							| 54 | 49 52 53 | sylc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) | 
						
							| 55 |  | domtr |  |-  ( ( ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( fi ` A ) ~<_ _om ) | 
						
							| 56 | 54 47 55 | syl2anc |  |-  ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ _om ) | 
						
							| 57 | 56 | ex |  |-  ( ( A e. B /\ _om e. _V ) -> ( f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) | 
						
							| 58 | 57 | exlimdv |  |-  ( ( A e. B /\ _om e. _V ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) | 
						
							| 59 | 4 58 | sylan2 |  |-  ( ( A e. B /\ A ~<_ _om ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) | 
						
							| 60 | 2 59 | mpd |  |-  ( ( A e. B /\ A ~<_ _om ) -> ( fi ` A ) ~<_ _om ) | 
						
							| 61 | 60 | ex |  |-  ( A e. B -> ( A ~<_ _om -> ( fi ` A ) ~<_ _om ) ) | 
						
							| 62 |  | fvex |  |-  ( fi ` A ) e. _V | 
						
							| 63 |  | ssfii |  |-  ( A e. B -> A C_ ( fi ` A ) ) | 
						
							| 64 |  | ssdomg |  |-  ( ( fi ` A ) e. _V -> ( A C_ ( fi ` A ) -> A ~<_ ( fi ` A ) ) ) | 
						
							| 65 | 62 63 64 | mpsyl |  |-  ( A e. B -> A ~<_ ( fi ` A ) ) | 
						
							| 66 |  | domtr |  |-  ( ( A ~<_ ( fi ` A ) /\ ( fi ` A ) ~<_ _om ) -> A ~<_ _om ) | 
						
							| 67 | 66 | ex |  |-  ( A ~<_ ( fi ` A ) -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) | 
						
							| 68 | 65 67 | syl |  |-  ( A e. B -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) | 
						
							| 69 | 61 68 | impbid |  |-  ( A e. B -> ( A ~<_ _om <-> ( fi ` A ) ~<_ _om ) ) |