| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fidmfisupp.1 |  |-  ( ph -> F : D --> R ) | 
						
							| 2 |  | fidmfisupp.2 |  |-  ( ph -> D e. Fin ) | 
						
							| 3 |  | fidmfisupp.3 |  |-  ( ph -> Z e. V ) | 
						
							| 4 | 1 2 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 5 |  | suppimacnv |  |-  ( ( F e. _V /\ Z e. V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 6 | 4 3 5 | syl2anc |  |-  ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) | 
						
							| 7 | 2 1 | fisuppfi |  |-  ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) | 
						
							| 8 | 6 7 | eqeltrd |  |-  ( ph -> ( F supp Z ) e. Fin ) | 
						
							| 9 | 1 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 10 |  | funisfsupp |  |-  ( ( Fun F /\ F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | 
						
							| 11 | 9 4 3 10 | syl3anc |  |-  ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) | 
						
							| 12 | 8 11 | mpbird |  |-  ( ph -> F finSupp Z ) |