Metamath Proof Explorer


Theorem fidmfisupp

Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fidmfisupp.1
|- ( ph -> F : D --> R )
fidmfisupp.2
|- ( ph -> D e. Fin )
fidmfisupp.3
|- ( ph -> Z e. V )
Assertion fidmfisupp
|- ( ph -> F finSupp Z )

Proof

Step Hyp Ref Expression
1 fidmfisupp.1
 |-  ( ph -> F : D --> R )
2 fidmfisupp.2
 |-  ( ph -> D e. Fin )
3 fidmfisupp.3
 |-  ( ph -> Z e. V )
4 fex
 |-  ( ( F : D --> R /\ D e. Fin ) -> F e. _V )
5 1 2 4 syl2anc
 |-  ( ph -> F e. _V )
6 suppimacnv
 |-  ( ( F e. _V /\ Z e. V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
7 5 3 6 syl2anc
 |-  ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
8 2 1 fisuppfi
 |-  ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin )
9 7 8 eqeltrd
 |-  ( ph -> ( F supp Z ) e. Fin )
10 1 ffund
 |-  ( ph -> Fun F )
11 funisfsupp
 |-  ( ( Fun F /\ F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) )
12 10 5 3 11 syl3anc
 |-  ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) )
13 9 12 mpbird
 |-  ( ph -> F finSupp Z )