| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmresv |  |-  dom ( F |` _V ) = dom F | 
						
							| 2 |  | finresfin |  |-  ( F e. Fin -> ( F |` _V ) e. Fin ) | 
						
							| 3 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 4 |  | eqid |  |-  ( x e. ( F |` _V ) |-> ( 1st ` x ) ) = ( x e. ( F |` _V ) |-> ( 1st ` x ) ) | 
						
							| 5 | 3 4 | fnmpti |  |-  ( x e. ( F |` _V ) |-> ( 1st ` x ) ) Fn ( F |` _V ) | 
						
							| 6 |  | dffn4 |  |-  ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) Fn ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 7 | 5 6 | mpbi |  |-  ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) | 
						
							| 8 |  | relres |  |-  Rel ( F |` _V ) | 
						
							| 9 |  | reldm |  |-  ( Rel ( F |` _V ) -> dom ( F |` _V ) = ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 10 |  | foeq3 |  |-  ( dom ( F |` _V ) = ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) -> ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) ) | 
						
							| 11 | 8 9 10 | mp2b |  |-  ( ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) <-> ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> ran ( x e. ( F |` _V ) |-> ( 1st ` x ) ) ) | 
						
							| 12 | 7 11 | mpbir |  |-  ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) | 
						
							| 13 |  | fodomfi |  |-  ( ( ( F |` _V ) e. Fin /\ ( x e. ( F |` _V ) |-> ( 1st ` x ) ) : ( F |` _V ) -onto-> dom ( F |` _V ) ) -> dom ( F |` _V ) ~<_ ( F |` _V ) ) | 
						
							| 14 | 2 12 13 | sylancl |  |-  ( F e. Fin -> dom ( F |` _V ) ~<_ ( F |` _V ) ) | 
						
							| 15 |  | resss |  |-  ( F |` _V ) C_ F | 
						
							| 16 |  | ssdomg |  |-  ( F e. Fin -> ( ( F |` _V ) C_ F -> ( F |` _V ) ~<_ F ) ) | 
						
							| 17 | 15 16 | mpi |  |-  ( F e. Fin -> ( F |` _V ) ~<_ F ) | 
						
							| 18 |  | domtr |  |-  ( ( dom ( F |` _V ) ~<_ ( F |` _V ) /\ ( F |` _V ) ~<_ F ) -> dom ( F |` _V ) ~<_ F ) | 
						
							| 19 | 14 17 18 | syl2anc |  |-  ( F e. Fin -> dom ( F |` _V ) ~<_ F ) | 
						
							| 20 | 1 19 | eqbrtrrid |  |-  ( F e. Fin -> dom F ~<_ F ) |