Step |
Hyp |
Ref |
Expression |
1 |
|
fidomndrng.b |
|- B = ( Base ` R ) |
2 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
3 |
2
|
adantl |
|- ( ( B e. Fin /\ R e. Domn ) -> R e. Ring ) |
4 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
5 |
4
|
adantl |
|- ( ( B e. Fin /\ R e. Domn ) -> R e. NzRing ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
8 |
6 7
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
9 |
5 8
|
syl |
|- ( ( B e. Fin /\ R e. Domn ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
10 |
9
|
neneqd |
|- ( ( B e. Fin /\ R e. Domn ) -> -. ( 1r ` R ) = ( 0g ` R ) ) |
11 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
12 |
11 7 6
|
0unit |
|- ( R e. Ring -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
13 |
3 12
|
syl |
|- ( ( B e. Fin /\ R e. Domn ) -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
14 |
10 13
|
mtbird |
|- ( ( B e. Fin /\ R e. Domn ) -> -. ( 0g ` R ) e. ( Unit ` R ) ) |
15 |
|
disjsn |
|- ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> -. ( 0g ` R ) e. ( Unit ` R ) ) |
16 |
14 15
|
sylibr |
|- ( ( B e. Fin /\ R e. Domn ) -> ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) ) |
17 |
1 11
|
unitss |
|- ( Unit ` R ) C_ B |
18 |
|
reldisj |
|- ( ( Unit ` R ) C_ B -> ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) ) |
19 |
17 18
|
ax-mp |
|- ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) |
20 |
16 19
|
sylib |
|- ( ( B e. Fin /\ R e. Domn ) -> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) |
21 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
22 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
23 |
|
simplr |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> R e. Domn ) |
24 |
|
simpll |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> B e. Fin ) |
25 |
|
simpr |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x e. ( B \ { ( 0g ` R ) } ) ) |
26 |
|
eqid |
|- ( y e. B |-> ( y ( .r ` R ) x ) ) = ( y e. B |-> ( y ( .r ` R ) x ) ) |
27 |
1 7 6 21 22 23 24 25 26
|
fidomndrnglem |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) |
28 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
29 |
28 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
30 |
28 7
|
oppr0 |
|- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
31 |
28 6
|
oppr1 |
|- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
32 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
33 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
34 |
28
|
opprdomn |
|- ( R e. Domn -> ( oppR ` R ) e. Domn ) |
35 |
23 34
|
syl |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> ( oppR ` R ) e. Domn ) |
36 |
|
eqid |
|- ( y e. B |-> ( y ( .r ` ( oppR ` R ) ) x ) ) = ( y e. B |-> ( y ( .r ` ( oppR ` R ) ) x ) ) |
37 |
29 30 31 32 33 35 24 25 36
|
fidomndrnglem |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
38 |
11 6 21 28 32
|
isunit |
|- ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
39 |
27 37 38
|
sylanbrc |
|- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x e. ( Unit ` R ) ) |
40 |
20 39
|
eqelssd |
|- ( ( B e. Fin /\ R e. Domn ) -> ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) |
41 |
1 11 7
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) ) |
42 |
3 40 41
|
sylanbrc |
|- ( ( B e. Fin /\ R e. Domn ) -> R e. DivRing ) |
43 |
42
|
ex |
|- ( B e. Fin -> ( R e. Domn -> R e. DivRing ) ) |
44 |
|
drngdomn |
|- ( R e. DivRing -> R e. Domn ) |
45 |
43 44
|
impbid1 |
|- ( B e. Fin -> ( R e. Domn <-> R e. DivRing ) ) |