Step |
Hyp |
Ref |
Expression |
1 |
|
fidomndrng.b |
|- B = ( Base ` R ) |
2 |
|
fidomndrng.z |
|- .0. = ( 0g ` R ) |
3 |
|
fidomndrng.o |
|- .1. = ( 1r ` R ) |
4 |
|
fidomndrng.d |
|- .|| = ( ||r ` R ) |
5 |
|
fidomndrng.t |
|- .x. = ( .r ` R ) |
6 |
|
fidomndrng.r |
|- ( ph -> R e. Domn ) |
7 |
|
fidomndrng.x |
|- ( ph -> B e. Fin ) |
8 |
|
fidomndrng.a |
|- ( ph -> A e. ( B \ { .0. } ) ) |
9 |
|
fidomndrng.f |
|- F = ( x e. B |-> ( x .x. A ) ) |
10 |
8
|
eldifad |
|- ( ph -> A e. B ) |
11 |
|
eldifsni |
|- ( A e. ( B \ { .0. } ) -> A =/= .0. ) |
12 |
8 11
|
syl |
|- ( ph -> A =/= .0. ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> A =/= .0. ) |
14 |
|
oveq1 |
|- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
15 |
|
ovex |
|- ( y .x. A ) e. _V |
16 |
14 9 15
|
fvmpt |
|- ( y e. B -> ( F ` y ) = ( y .x. A ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ y e. B ) -> ( F ` y ) = ( y .x. A ) ) |
18 |
17
|
eqeq1d |
|- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. <-> ( y .x. A ) = .0. ) ) |
19 |
6
|
adantr |
|- ( ( ph /\ y e. B ) -> R e. Domn ) |
20 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
21 |
10
|
adantr |
|- ( ( ph /\ y e. B ) -> A e. B ) |
22 |
1 5 2
|
domneq0 |
|- ( ( R e. Domn /\ y e. B /\ A e. B ) -> ( ( y .x. A ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( ph /\ y e. B ) -> ( ( y .x. A ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
24 |
18 23
|
bitrd |
|- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. <-> ( y = .0. \/ A = .0. ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( y = .0. \/ A = .0. ) ) |
26 |
25
|
ord |
|- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( -. y = .0. -> A = .0. ) ) |
27 |
26
|
necon1ad |
|- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> ( A =/= .0. -> y = .0. ) ) |
28 |
13 27
|
mpd |
|- ( ( ( ph /\ y e. B ) /\ ( F ` y ) = .0. ) -> y = .0. ) |
29 |
28
|
ex |
|- ( ( ph /\ y e. B ) -> ( ( F ` y ) = .0. -> y = .0. ) ) |
30 |
29
|
ralrimiva |
|- ( ph -> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) |
31 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
32 |
6 31
|
syl |
|- ( ph -> R e. Ring ) |
33 |
1 5
|
ringrghm |
|- ( ( R e. Ring /\ A e. B ) -> ( x e. B |-> ( x .x. A ) ) e. ( R GrpHom R ) ) |
34 |
32 10 33
|
syl2anc |
|- ( ph -> ( x e. B |-> ( x .x. A ) ) e. ( R GrpHom R ) ) |
35 |
9 34
|
eqeltrid |
|- ( ph -> F e. ( R GrpHom R ) ) |
36 |
1 1 2 2
|
ghmf1 |
|- ( F e. ( R GrpHom R ) -> ( F : B -1-1-> B <-> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) ) |
37 |
35 36
|
syl |
|- ( ph -> ( F : B -1-1-> B <-> A. y e. B ( ( F ` y ) = .0. -> y = .0. ) ) ) |
38 |
30 37
|
mpbird |
|- ( ph -> F : B -1-1-> B ) |
39 |
|
enrefg |
|- ( B e. Fin -> B ~~ B ) |
40 |
7 39
|
syl |
|- ( ph -> B ~~ B ) |
41 |
|
f1finf1o |
|- ( ( B ~~ B /\ B e. Fin ) -> ( F : B -1-1-> B <-> F : B -1-1-onto-> B ) ) |
42 |
40 7 41
|
syl2anc |
|- ( ph -> ( F : B -1-1-> B <-> F : B -1-1-onto-> B ) ) |
43 |
38 42
|
mpbid |
|- ( ph -> F : B -1-1-onto-> B ) |
44 |
|
f1ocnv |
|- ( F : B -1-1-onto-> B -> `' F : B -1-1-onto-> B ) |
45 |
|
f1of |
|- ( `' F : B -1-1-onto-> B -> `' F : B --> B ) |
46 |
43 44 45
|
3syl |
|- ( ph -> `' F : B --> B ) |
47 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
48 |
32 47
|
syl |
|- ( ph -> .1. e. B ) |
49 |
46 48
|
ffvelrnd |
|- ( ph -> ( `' F ` .1. ) e. B ) |
50 |
1 4 5
|
dvdsrmul |
|- ( ( A e. B /\ ( `' F ` .1. ) e. B ) -> A .|| ( ( `' F ` .1. ) .x. A ) ) |
51 |
10 49 50
|
syl2anc |
|- ( ph -> A .|| ( ( `' F ` .1. ) .x. A ) ) |
52 |
|
oveq1 |
|- ( y = ( `' F ` .1. ) -> ( y .x. A ) = ( ( `' F ` .1. ) .x. A ) ) |
53 |
14
|
cbvmptv |
|- ( x e. B |-> ( x .x. A ) ) = ( y e. B |-> ( y .x. A ) ) |
54 |
9 53
|
eqtri |
|- F = ( y e. B |-> ( y .x. A ) ) |
55 |
|
ovex |
|- ( ( `' F ` .1. ) .x. A ) e. _V |
56 |
52 54 55
|
fvmpt |
|- ( ( `' F ` .1. ) e. B -> ( F ` ( `' F ` .1. ) ) = ( ( `' F ` .1. ) .x. A ) ) |
57 |
49 56
|
syl |
|- ( ph -> ( F ` ( `' F ` .1. ) ) = ( ( `' F ` .1. ) .x. A ) ) |
58 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> B /\ .1. e. B ) -> ( F ` ( `' F ` .1. ) ) = .1. ) |
59 |
43 48 58
|
syl2anc |
|- ( ph -> ( F ` ( `' F ` .1. ) ) = .1. ) |
60 |
57 59
|
eqtr3d |
|- ( ph -> ( ( `' F ` .1. ) .x. A ) = .1. ) |
61 |
51 60
|
breqtrd |
|- ( ph -> A .|| .1. ) |