| Step | Hyp | Ref | Expression | 
						
							| 1 |  | domnsym |  |-  ( A ~<_ B -> -. B ~< A ) | 
						
							| 2 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 3 | 2 | con3i |  |-  ( -. A ~<_ B -> -. A ~< B ) | 
						
							| 4 |  | fidomtri |  |-  ( ( B e. Fin /\ A e. V ) -> ( B ~<_ A <-> -. A ~< B ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. V /\ B e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) | 
						
							| 6 | 3 5 | imbitrrid |  |-  ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> B ~<_ A ) ) | 
						
							| 7 |  | ensym |  |-  ( B ~~ A -> A ~~ B ) | 
						
							| 8 |  | endom |  |-  ( A ~~ B -> A ~<_ B ) | 
						
							| 9 | 7 8 | syl |  |-  ( B ~~ A -> A ~<_ B ) | 
						
							| 10 | 9 | con3i |  |-  ( -. A ~<_ B -> -. B ~~ A ) | 
						
							| 11 | 6 10 | jca2 |  |-  ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> ( B ~<_ A /\ -. B ~~ A ) ) ) | 
						
							| 12 |  | brsdom |  |-  ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) | 
						
							| 13 | 11 12 | imbitrrdi |  |-  ( ( A e. V /\ B e. Fin ) -> ( -. A ~<_ B -> B ~< A ) ) | 
						
							| 14 | 13 | con1d |  |-  ( ( A e. V /\ B e. Fin ) -> ( -. B ~< A -> A ~<_ B ) ) | 
						
							| 15 | 1 14 | impbid2 |  |-  ( ( A e. V /\ B e. Fin ) -> ( A ~<_ B <-> -. B ~< A ) ) |