Metamath Proof Explorer


Theorem fiidomfld

Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis fidomndrng.b
|- B = ( Base ` R )
Assertion fiidomfld
|- ( B e. Fin -> ( R e. IDomn <-> R e. Field ) )

Proof

Step Hyp Ref Expression
1 fidomndrng.b
 |-  B = ( Base ` R )
2 1 fidomndrng
 |-  ( B e. Fin -> ( R e. Domn <-> R e. DivRing ) )
3 2 anbi2d
 |-  ( B e. Fin -> ( ( R e. CRing /\ R e. Domn ) <-> ( R e. CRing /\ R e. DivRing ) ) )
4 isidom
 |-  ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) )
5 isfld
 |-  ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) )
6 5 biancomi
 |-  ( R e. Field <-> ( R e. CRing /\ R e. DivRing ) )
7 3 4 6 3bitr4g
 |-  ( B e. Fin -> ( R e. IDomn <-> R e. Field ) )