Description: A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fidomndrng.b | |- B = ( Base ` R ) |
|
Assertion | fiidomfld | |- ( B e. Fin -> ( R e. IDomn <-> R e. Field ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidomndrng.b | |- B = ( Base ` R ) |
|
2 | 1 | fidomndrng | |- ( B e. Fin -> ( R e. Domn <-> R e. DivRing ) ) |
3 | 2 | anbi2d | |- ( B e. Fin -> ( ( R e. CRing /\ R e. Domn ) <-> ( R e. CRing /\ R e. DivRing ) ) ) |
4 | isidom | |- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
|
5 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
6 | 5 | biancomi | |- ( R e. Field <-> ( R e. CRing /\ R e. DivRing ) ) |
7 | 3 4 6 | 3bitr4g | |- ( B e. Fin -> ( R e. IDomn <-> R e. Field ) ) |