Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | fiinfcl | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf | |- inf ( B , A , R ) = sup ( B , A , `' R ) |
|
2 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
3 | fisupcl | |- ( ( `' R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B ) |
|
4 | 2 3 | sylanb | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B ) |
5 | 1 4 | eqeltrid | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) |