Metamath Proof Explorer


Theorem fiinfcl

Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Assertion fiinfcl
|- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B )

Proof

Step Hyp Ref Expression
1 df-inf
 |-  inf ( B , A , R ) = sup ( B , A , `' R )
2 cnvso
 |-  ( R Or A <-> `' R Or A )
3 fisupcl
 |-  ( ( `' R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B )
4 2 3 sylanb
 |-  ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B )
5 1 4 eqeltrid
 |-  ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B )