Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiinfcl | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inf | |- inf ( B , A , R ) = sup ( B , A , `' R ) | |
| 2 | cnvso | |- ( R Or A <-> `' R Or A ) | |
| 3 | fisupcl | |- ( ( `' R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B ) | |
| 4 | 2 3 | sylanb | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> sup ( B , A , `' R ) e. B ) | 
| 5 | 1 4 | eqeltrid | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) |