Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fileln0 | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> A =/= (/) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | |- ( A e. F -> A e. F )  | 
						|
| 2 | 0nelfil | |- ( F e. ( Fil ` X ) -> -. (/) e. F )  | 
						|
| 3 | nelne2 | |- ( ( A e. F /\ -. (/) e. F ) -> A =/= (/) )  | 
						|
| 4 | 1 2 3 | syl2anr | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> A =/= (/) )  |