Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filfi | |- ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filin | |- ( ( F e. ( Fil ` X ) /\ x e. F /\ y e. F ) -> ( x i^i y ) e. F ) |
|
2 | 1 | 3expib | |- ( F e. ( Fil ` X ) -> ( ( x e. F /\ y e. F ) -> ( x i^i y ) e. F ) ) |
3 | 2 | ralrimivv | |- ( F e. ( Fil ` X ) -> A. x e. F A. y e. F ( x i^i y ) e. F ) |
4 | inficl | |- ( F e. ( Fil ` X ) -> ( A. x e. F A. y e. F ( x i^i y ) e. F <-> ( fi ` F ) = F ) ) |
|
5 | 3 4 | mpbid | |- ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) |