Metamath Proof Explorer


Theorem filfinnfr

Description: No filter containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filfinnfr
|- ( ( F e. ( Fil ` X ) /\ S e. F /\ S e. Fin ) -> |^| F =/= (/) )

Proof

Step Hyp Ref Expression
1 filfbas
 |-  ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) )
2 fbfinnfr
 |-  ( ( F e. ( fBas ` X ) /\ S e. F /\ S e. Fin ) -> |^| F =/= (/) )
3 1 2 syl3an1
 |-  ( ( F e. ( Fil ` X ) /\ S e. F /\ S e. Fin ) -> |^| F =/= (/) )