Metamath Proof Explorer


Theorem filinn0

Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filinn0
|- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) =/= (/) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> F e. ( Fil ` X ) )
2 filin
 |-  ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) e. F )
3 fileln0
 |-  ( ( F e. ( Fil ` X ) /\ ( A i^i B ) e. F ) -> ( A i^i B ) =/= (/) )
4 1 2 3 syl2anc
 |-  ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) =/= (/) )