Description: The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filinn0 | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> F e. ( Fil ` X ) ) |
|
2 | filin | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) e. F ) |
|
3 | fileln0 | |- ( ( F e. ( Fil ` X ) /\ ( A i^i B ) e. F ) -> ( A i^i B ) =/= (/) ) |
|
4 | 1 2 3 | syl2anc | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) =/= (/) ) |