| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfir |
|- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` F ) ) |
| 2 |
|
filfi |
|- ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) |
| 3 |
2
|
adantr |
|- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> ( fi ` F ) = F ) |
| 4 |
1 3
|
eleqtrd |
|- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. F ) |
| 5 |
|
fileln0 |
|- ( ( F e. ( Fil ` X ) /\ |^| A e. F ) -> |^| A =/= (/) ) |
| 6 |
4 5
|
syldan |
|- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A =/= (/) ) |